Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi So Tired
Xem chi tiết
nguyen thi vang
8 tháng 1 2021 lúc 21:12

Có \(\dfrac{a}{b}=\dfrac{c}{d}< =>\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

<=> \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\left(\dfrac{a+b}{c+d}\right)^2\)

<=> \(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2\)(1)

Có \(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng DTSBN ta có: 

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)(2)

Từ (1) (2) => đpcm.

Nguyễn Ngọc Linh
Xem chi tiết
Lê Minh Anh
15 tháng 6 2017 lúc 15:59

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=k^2;\frac{a}{c}.\frac{b}{d}=k^2\Rightarrow\frac{a^2}{c^2}=\frac{ab}{c\text{d}}\left(=k^2\right)\)

(Bạn xem cách trình bày có hợp lý không giúp mình nha!)

Quoc Nhan
6 tháng 10 2018 lúc 21:42

a/b=c/d

suy ra a.d=b.c

a.d.ac=b.c.ac

a^2.cd=c^2.ab

suy ra a^2/c^2=ab/cd

Kosho Kano
Xem chi tiết
︎ ︎︎ ︎=︎︎ ︎︎ ︎
21 tháng 9 2017 lúc 14:44

Cách 1 :

Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )

Vậy a+b/a-b = c+d/c-d

Cách 2:

Đặt : a/b = c/d = k

a/b = k => a= bk

c/d = k => c=dk

a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)

c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)

Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.

Hải Đăng
21 tháng 9 2017 lúc 15:53

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)

Chúc bạn học tốt!

GT 6916
Xem chi tiết
tth_new
12 tháng 11 2018 lúc 10:13

Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)

ĐK: b,d ≠ 0 ; b≠d

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\) 

GT 6916
12 tháng 11 2018 lúc 6:54

\(a^2+b^2\)nha mn

Nguyễn Linh Chi
12 tháng 11 2018 lúc 9:19

ĐK:b, d khác o, b khác d

+) c=0 => a=0 hệ thức đúng

+) c khác 0

Với c+d=0 hệ thức đúng

Với c+d khác 0

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

=>\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

Nguyễn Thị  Anh
Xem chi tiết
lelinhngoc
21 tháng 10 2015 lúc 12:28

vào câu hỏi tương tự nha

****

Nguyễn Minh Thư
Xem chi tiết
Cô Hoàng Huyền
27 tháng 10 2016 lúc 15:13

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^2=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\left(đpcm\right)\)

Vũ Minh Hằng
Xem chi tiết
Ngô Tấn Đạt
26 tháng 9 2017 lúc 18:58

Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Trần Bình Minh
12 tháng 9 2017 lúc 20:04

Trong sách có nhé , bạn ạ

tèn tén ten
Xem chi tiết
Nguyễn Anh Duy
12 tháng 11 2016 lúc 23:00

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Lu Lu
Xem chi tiết
Lightning Farron
25 tháng 9 2016 lúc 20:55

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)

Xét VT \(\frac{ac}{bd}=\frac{bkdk}{bd}=\frac{bdk^2}{bd}=k^2\left(1\right)\)

Xét VP \(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2) ->ĐPcm