Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Tuấn Anh
Xem chi tiết
Nguyễn Dương Thành Đạt
Xem chi tiết
Akai Haruma
31 tháng 7 2021 lúc 10:32

1.

ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$

PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)

\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)

\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)

\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)

Akai Haruma
31 tháng 7 2021 lúc 10:33

2.

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$

$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$

$\Leftrightarrow 2\sqrt{x}=0$

$\Leftrightarrow x=0$

Thử lại thấy thỏa mãn 

Vậy $x=0$

 

Akai Haruma
31 tháng 7 2021 lúc 10:44

3.

ĐKXĐ: $x\geq -1$

PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)

\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)

\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)

\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)

Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$

$\Rightarrow x^2+4034+5> 4x+4034$

$\Rightarrow \text{VP}> \text{VT}$

Do đó pt vô nghiệm.

 

Phạm Thị Thu Trang
Xem chi tiết
alibaba nguyễn
27 tháng 8 2016 lúc 11:57

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

Nguyễn Thị Thùy Dương
20 tháng 9 2016 lúc 18:32

x+y =0

=> P = 1

OIUoiu
20 tháng 9 2016 lúc 19:40

x+y=0

=>P=1

Nguyễn Tuyết Nhi
Xem chi tiết
Trần Hà Mi
Xem chi tiết
Le Thi nhat Tien
18 tháng 12 2016 lúc 8:37

khó hiểu làm sao ?

alibaba nguyễn
18 tháng 12 2016 lúc 21:03

Đề chỉ nhiêu đâu thôi hả

Đỗ Thị Trà My
19 tháng 12 2016 lúc 17:45

khó hỉu quá trời

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2020 lúc 18:56

a/

\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 4 2020 lúc 19:02

b/

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Rightarrow1< x\le2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
3 tháng 4 2020 lúc 19:06

d/

ĐKXĐ: \(\left\{{}\begin{matrix}x^3-4x\ge0\\\frac{1+x}{x}-2\ge0\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)\left(x+2\right)\ge0\\\frac{1-x}{x}\ge0\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}-2\le x\le0\\x\ge2\end{matrix}\right.\\0< x\le1\\x\ne0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ

Vậy BPT đã cho vô nghiệm

Khách vãng lai đã xóa
Hoàng Lê Bảo Ngọc
Xem chi tiết
alibaba nguyễn
29 tháng 11 2016 lúc 16:25

Mình có ý tưởng vầy nè. Bạn phát triên nó xe sao

Điều kiện \(-1\le x\le1\)

Đặt \(\hept{\begin{cases}!x!=a\left(0\le a\le1\right)\\\sqrt{1-x^2}=b\left(0\le b\le1\right)\end{cases}\Rightarrow a^2+b^2=1}\)

\(BPT\Leftrightarrow2ab+\left(1-k\right)\left(a+b\right)+2-k\le0\)

\(\Leftrightarrow k\ge\frac{2ab+a+b+2}{a+b+1}\)

Vậy giờ bạn làm bài khác nè

Tìm GTNN của \(\frac{2ab+a+b+2}{a+b+1}\)

Với \(\hept{\begin{cases}\left(0\le a\le1\right)\\\left(0\le b\le1\right)\\a^2+b^2=1\end{cases}}\)

Bùi Thị Vân
29 tháng 11 2016 lúc 16:42

Ý tưởng của alibaba nguyễn gần đúng như ý tưởng của cô. 
Nhưng thay vì đưa về hệ, cô đặt \(\left|x\right|+\sqrt{1-x^2}=t\) , khi đó \(1\le t\le\sqrt{2}\)
Sau đó rút k theo t ta được \(k\ge\frac{t^2+t+1}{t+1}=t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
Khi đó giá trị nhỏ nhất mà k cần đạt chính là GTLN của \(t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).

ngonhuminh
29 tháng 11 2016 lúc 17:17

dat an phu viet cho gon (1-k)= t cho gon IxI<=1

IxI=a

\(\sqrt{1-x^2}=b\)

\(0\le a\le1\)

\(0\le b\le1\)

\(1\le a+b\le\sqrt{2}\)

\(a^2+b^2=1\)

\(\left(a+b\right)^2+t\left(a+b\right)\le0\)

\(\left(a+b\right)\left[\left(a+b\right)+t\right]\le0\)

\(\Rightarrow t\le0\&ItI\le\left(a+b\right)\)

\(\Rightarrow t\le-\left(a+b\right)\)

\(\Rightarrow t\le-1\Rightarrow k\ge2\)

laughtpee
Xem chi tiết
Nguyễn Vũ Minh Hiếu
Xem chi tiết
Nguyễn Phương Uyên
6 tháng 2 2020 lúc 7:58

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

Khách vãng lai đã xóa
Yêu nè
6 tháng 2 2020 lúc 9:26

Thông cảm máy chụp đểu

Khách vãng lai đã xóa