x^2 +5y^2 -2xy +4y+1 =0
Tìm x,y biết :
\(x^2+5y^2-2xy+4y+1=0\)
(x^2 - 2xy + y^2) + (4y^2 + 4y + 1) = 0
(x-y)^2 + (2y+1) ^2 = 0
=> (x-y)^2=0 và (2y+1) ^2 = 0
=> x-y = 0 và 2y+1 = 0
=> x= y và y=-1/2
=> x=y = -1/2
Tìm x,y biết:
x2- 2xy+5y2- 4y+1=0
\(x^2-2xy+5y^2-4y+1=0\)
=> \(\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)
=> \(\left(x-y\right)^2+\left(2y-1\right)^2=0\)
Ta có: \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(2y-1\right)^2\ge0\forall y\)
=> \(\left(x-y\right)^2+\left(2y-1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\2y=1\end{cases}}\) <=> \(x=y=\frac{1}{2}\)
Vậy x = y = 1/2 (tm)
\(x^2-2xy+5y^2-4y+1=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2y-1\right)^2=0\)
Mà (x-y)2và (2y-1)2 > 0
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)
tìm x , y biết :
a) \(x^2+5y^2-2xy+4y+1=0\)
b) \(5x^2+5y^2+8xy-2x+2y+2=0\)
a)\(x^2+5y^2-2xy+4y+1=0\)
\(x^2+2xy+y^2+4y^2+4y+1=0\)
\(\left(x+y\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\2y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\y=-\frac{1}{2}\left(1\right)\end{cases}}\)
Từ (1) ta đc: x = 1/2
b)\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
CÂU B Sao bạn làm được vậy
Bài làm:
a) \(x^2+5y^2-2xy+4y+1=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2y+1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy \(x=y=-\frac{1}{2}\)
b) \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(x+1\right)^2=0\)
Vì \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
phân tích thành nhân tử
`3x^2 -3xy-5x+5y`
`2x^3 y-2xy^3 -4xy^2 -2xy`
`x^2 -1+2x-y^2`
`x^2 +4x-2xy-4y+4y^2`
`x^3 -2x^2 +x`
`2x^2 +4x+2-2y^2`
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
chứng minh giá trị của A luôn không âm với mội giá trị khác 0 của x,y A=(75x^5y^2-45x^4y^3):3x^3y^2-(5/2x^2y^4-2xy^5):1/2xy
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
giúp mình với mai phải hok nhà thày k bit lam thầy phạt
Bài 1 Tìm x,y biết
a, x2-2x+2+4y2+4y=0
b, x2+4y+4xy+5y2+4=0
c, 9x2-2y+6xy+2y2+1=0
d, x2-4x+5+y2+2y=0
e, 2x2+y2-2xy+10x+25=0
g, x2+2xy+5y2+2y=0
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
Tìm x, y biết:
x2 + 2y2 - 2xy + 2x + 2 - 4y=0
5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
Ta có: x^2+2y^2-2xy+2x+2-4y=0
=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0
=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0
=> (x-y+1)^2+(y-1)^2=0
mà (x-y+1)^2> hoặc=0 với mọi x;y
(y-1)^2> hoặc=0 với mọi x;y
nên x-y+1=0;y-1=0
=> y=1; x=0
a) x^2+!x-3!=4xy-4y^2
b)x^2+5y^2+2xy+4x+5
c)x^2-2x+y^2+4yz+4z^2+6=0
d)y^2+2y+4-2^x+2+2=0
Tìm GTNN
D= x^2 + 5y^2 - 2xy +4y +3
D = (x2 - 2xy + y2) + [(2y)2+ 2.2y.1 + 12] + 2
= (x - y)2 + (2y + 1)2 + 2
Ta thấy: (x - y)2 ≥0∀x thuộc R
(2y + 1)2 ≥0∀y thuộc R
=> (x - y)2 + (2y + 1)2 ≥0
=> (x - y)2 + (2y + 1)2 + 2 ≥2
=> Min D = 2 \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x=y=\dfrac{1}{2}\)
Vậy Min D = 2 khi x=y=1/2
\(D=x^2+5y^2-2xy+4y+3\)
\(=x^2-2xy+y^2+4y^2+4y+1+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Do \(\left(x-y\right)^2\ge0\forall x,y\in R\)
\(\left(2y+1\right)^2\ge0\forall y\in R\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\in R\)
\(\Rightarrow\) Giá trị nhỏ nhất của D là 2 \(\Leftrightarrow x=y=-\dfrac{1}{2}\)