bài 1 giải pt
\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{7x-3}{9-x^2}\)
2x+3<6-(3-4x)
15, giải pt sau.
1,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
2,\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
3,\(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)
=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)
=> \(9x+27+6=20x+36-21x+27\)
=> \(9x-20x+21x=27-27-6+36\)
=> \(10x=30\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)
=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
=> \(20x-30-5x+15=24x+18-510\)
=> \(20x-5x-24x=18-510+30-15\)
=> \(-9x=-477\)
=> \(x=53\)
Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)
3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)
=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)
=> \(150x-30+40x+160=84x-60+180x-180\)
=> \(150x+40x-180x-84x=-60-180-160+30\)
=> \(-74x=-370\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
Giải pt:
a) \(\frac{x^2+2x-16}{x^2-x-12}+1=\frac{2x+1}{x+3}+\frac{3x-8}{x-4}\)
b) \(\frac{2x-1}{x+2}+\frac{7x+9}{\left(x+2\right)\left(x-1\right)}=\frac{3x-1}{x-1}\)
c) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=\frac{x+20}{1}+\frac{x+19}{2}+\frac{x+18}{3}\)
Giải giúp mình với ạ :((
giải pt
1,\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
2,\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
3,\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
4,\(\frac{2x}{x-1}+\frac{4}{x^2+2x-3=}=\frac{2x-5}{x+3}\)
5,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)
6,\(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)
7,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)
Bài 1:
ĐKXĐ: x≠1
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)
\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
Vì 3≠0
nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)
Vậy: x=0
Bài 2:
ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)
Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow-x=4\)
hay x=-4(tm)
Vậy: x=-4
Bài 3:
ĐKXĐ: x≠1; x≠-1
Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)
\(\Leftrightarrow-6x^2+10x=0\)
\(\Leftrightarrow2x\left(-3x+5\right)=0\)
Vì 2≠0
nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)
Bài 4:
ĐKXĐ: x≠1; x≠-3
Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)
\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)
\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)
\(\Leftrightarrow13x-1=0\)
\(\Leftrightarrow13x=1\)
hay \(x=\frac{1}{13}\)(tm)
Vậy: \(x=\frac{1}{13}\)
Bài 5:
ĐKXĐ: x≠1; x≠-2
Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)
\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)
\(\Leftrightarrow x+2-7x+7-3=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Leftrightarrow-6\left(x-1\right)=0\)
Vì -6≠0
nên x-1=0
hay x=1(ktm)
Vậy: x∈∅
Bài 6:
ĐKXĐ: x≠4; x≠2
Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)
\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)
\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)
\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)
\(\Leftrightarrow2x^2-4x=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
Vì 2≠0
nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)
Vậy: x=0
Bài 7:
ĐKXĐ: x≠1; x≠-2; x≠-1
Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)
\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)
\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)
\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)
\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)
\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)
Còn lại tương tự mà làm nhé!
1) Giải các pt sau:
a) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
b) \(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
c) \(\frac{x+8}{6}-\frac{2x-5}{5}=\frac{x-1}{3}-x+7\)
d) \(\frac{7x}{8}-5\left(x-9\right)=\frac{2x+1,5}{6}\)
e) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
f) \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Giải pt:
1. x-4=2x+4
2. \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)
3.\(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
4.\(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)
1) Ta có: x-4=2x+4
\(\Leftrightarrow x-4-2x-4=0\)
\(\Leftrightarrow-x-8=0\)
\(\Leftrightarrow-x=8\)
hay x=-8
Vậy: S={8}
2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)
\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)
\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)
\(\Leftrightarrow6x-3-2x-6x+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
hay x=-3
Vậy: S={-3}
3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)
Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)
\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)
\(\Leftrightarrow-4x^2-2x-18=0\)
\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)
\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)
Vậy: S=\(\varnothing\)
4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x-1-24+2x=0\)
\(\Leftrightarrow8x-25=0\)
\(\Leftrightarrow8x=25\)
hay \(x=\frac{25}{8}\)
Vậy: \(S=\left\{\frac{25}{8}\right\}\)
giải pt: a)\(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\) b)\(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\) c)\(\frac{1}{\left(x+29\right)^2}+\frac{1}{\left(x+30\right)^2}=\frac{13}{36}\)
bài 3,Giải PT
a,\(\frac{3}{2}.\left(x-\frac{5}{4}\right)-\frac{5}{8}=x\\ \)
b,\(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
c,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
giải pt sau:
\(\frac{x-1}{2x^2-3x-2}-\frac{x}{2x^2+7x+3}=\frac{4}{x^2+x-6}\)