Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Khánh
Xem chi tiết

Đáp án: 

`hat{ABC} = 135^0`

`hat{C} = 45^0`

Giải thích các bước giải:

– Kẻ `OH ⊥ DC = {H}` 

– Xét tứ giác `ABHD` có: 

`AD = AB` 

`hat{A} = hat{D} = 90^0`

`=> ABHD` là hình vuông

`=>` {DH=HC=2(cm)AD=BH=2(cm) 

Xét `ΔBHC` vuông cân tại `H` có: 

`hat {HBC} = hat{C} = 45^0` 

`=> hat{ABC} = hat{HBC} + hat{ABH} = 45^0 + 90^0 = 135^0`

Khách vãng lai đã xóa
ミ★ғox♥️ʀồɴԍ★彡乡
3 tháng 10 2021 lúc 20:10

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠∠A = ∠∠D = 900900 )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: Δ∆BHC vuông cân tại H

⇒ ∠∠C = 450450

∠∠B + ∠∠C = 18001800 (2 góc trong cùng phía bù nhau) ⇒ ∠∠B = 18001800 – 450450 = 1350

Khách vãng lai đã xóa
ミ★ғox♥️ʀồɴԍ★彡乡
3 tháng 10 2021 lúc 20:12

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có  ∠ A =  ∠ D = 90 0  )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ∆ BHC vuông cân tại H

HT

Khách vãng lai đã xóa
PhamQuangLocAAA
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 11:49

Gọi K là trung điểm của HD

Xét ΔHDC có

K,M lần lượt là trung điểm của HD,HC

=>KM là đường trung bình

=>KM//DC và KM=DC/2

=>KM//AB và KM=AB

=>ABMK là hình bình hành

=>AK//BM

MK//DC

DC vuông góc AD

=>MK vuông góc AD

Xét ΔADM có

MK,DH là đường cao

MK cắt DH tại K

Do đó: K là trực tâm

=>AK vuông góc DM

mà BM//AK

nên BM vuông góc DM

Phạm Thị Hằng
Xem chi tiết
bui huynh nhu 898
Xem chi tiết
Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 17:36

Kẻ đường cao BH

Xét tứ giác ABHD có 

\(\widehat{BAD}=90^0\)

\(\widehat{ADH}=90^0\)

\(\widehat{BHD}=90^0\)

Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow AB^2+12^2=BD^2\)(1)

Ta có: ABHD là hình chữ nhật(cmt)

nên AD=BH(hai cạnh đối)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:

\(DC^2=BD^2+BC^2\)

\(\Leftrightarrow BD^2+BC^2=25^2=625\)(2)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:

\(BD\cdot BC=BH\cdot DC\)

\(\Leftrightarrow BD\cdot BC=12\cdot25=300\)

hay \(BC=\dfrac{300}{BD}\)(3)

Thay (3) vào (2), ta được:

\(BD^2+\left(\dfrac{300}{BD}\right)^2=625\)

\(\Leftrightarrow\dfrac{BD^4+90000}{BD^2}=625\)

\(\Leftrightarrow BD^4-625BD^2+90000=0\)

\(\Leftrightarrow BD^4-400BD^2-225BD^2+90000=0\)

\(\Leftrightarrow\left(BD^2-400\right)\left(BD^2-225\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}BD=15\\BD=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB=9\left(cm\right)\\AB=16\left(cm\right)\end{matrix}\right.\)

Diện tích hình thang ABCD là:

\(S_{ABCD}=\dfrac{AB+CD}{2}\cdot AD=\left[{}\begin{matrix}\dfrac{9+25}{2}\cdot12=204\left(cm^2\right)\\\dfrac{9+16}{2}\cdot12=150\left(cm^2\right)\end{matrix}\right.\)

missing you =
3 tháng 7 2021 lúc 17:37

từ B hạ BE\(\perp DC\)

theo bài ra ABCD là hình thang \(=>AB//CD=>AB//DE\)

mà \(\angle\left(A\right)=\angle\left(D\right)=90^o\)=>chứng minh được ABED là hình chữ nhật

\(=>AD=BE=12cm\)

áp dụng hệ thức lượng \(=>BE^2=DE.EC< =>12^2=DE\left(25-DE\right)=>DE=16cm=AB\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)BE}{2}=\dfrac{\left(16+25\right)12}{2}=246cm^2\)

 

hnamyuh
3 tháng 7 2021 lúc 17:38

Chanoppa
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết
VRCT_Ran Love Shinichi
5 tháng 9 2016 lúc 15:54

Kẻ BH vung góc với CD suy ra tứ giác ABHD là hình chữ nhật 
nên ^ABH=90* (1) 
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2) 
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120* 

fami là điều tuyệt vời n...
Xem chi tiết
Mai Trang
Xem chi tiết