\(\log_3\)(x2+x+1)=2x-x2+\(\log_3\)x
giải các bất phương trình sau
a) \(log\left(x-2\right)< 3\)
b) \(log_2\left(2x-1\right)>3\)
c) \(log_3\left(-x-1\right)\le2\)
d) \(log_2\left(2x-3\right)\ge2\)
e) \(log_3\left(2x-7\right)>2\)
a: \(log\left(x-2\right)< 3\)
=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)
b: \(log_2\left(2x-1\right)>3\)
=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)
=>2x>10
=>x>5
c: \(log_3\left(-x-1\right)< =2\)
=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)
d: \(log_2\left(2x-3\right)>=2\)
=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)
=>2x-3>=4
=>2x>=7
=>\(x>=\dfrac{7}{2}\)
e: \(log_3\left(2x-7\right)>2\)
=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)
=>2x-7>9
=>2x>16
=>x>8
a.
\(log\left(x-2\right)< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)
b.
\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)
c.
\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)
d.
\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)
e,
\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
Lời giải:
a. ĐK: $x>2$
$\log(x-2)<3$
$\Leftrightarrow x-2< 10^3$
$\Leftrightarrow x< 1002$
Vậy $2< x< 1002$
b. ĐK: $x> \frac{1}{2}$
$\log_2(2x-1)>3$
$\Leftrightarrow 2x-1> 2^3$
$\Leftrightarrow 2x> 9$
$\Leftrightarrow x> \frac{9}{2}$
Vậy $x> \frac{9}{2}$
c. ĐK: $x< -1$
$\log_3(-x-1)\leq 2$
$\Leftrightarrow -x-1\leq 3^2=9$
$\Leftrightarrow x+1\geq -9$
$\Leftrightarrow x\geq -10$
Vậy $-10\leq x< -1$
d. ĐK: $x> \frac{3}{2}$
$\log_2(2x-3)\geq 2$
$\Leftrightarrow 2x-3\geq 2^2=4$
$\Leftrightarrow x\geq \frac{7}{2}$
Vậy $x\geq \frac{7}{2}$
e. ĐK: $x> \frac{7}{2}$
$\log_3(2x-7)>2$
$\Leftrightarrow 2x-7> 3^2=9$
$\Leftrightarrow x> 8$
Vậy $x>8$
tìm tập xác định của hàm số sau
a) \(y=log_2\left(2x-4\right)\)
b) \(y=log_2\left(2x+8\right)\)
c) \(y=log_3\left(4-x\right)\)
d) \(y=log_2\dfrac{1}{x+4}\)
d) \(y=log_3\left(x-3\right)\left(x+9\right)\)
ĐKXĐ:
a.
\(2x-4>0\Rightarrow x>2\Rightarrow D=\left(2;+\infty\right)\)
b.
\(2x+8>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)
c.
\(4-x>0\Rightarrow x< 4\Rightarrow D=\left(-\infty;4\right)\)
d.
\(\dfrac{1}{x+4}>0\Rightarrow x>-4\Rightarrow D=\left(-4;+\infty\right)\)
e.
\(\left(x-3\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-9\right)\cup\left(3;+\infty\right)\)
a: ĐKXĐ: 2x-4>0
=>2x>4
=>x>2
b: ĐKXĐ: 2x+8>0
=>2x>-8
=>x>-4
c: ĐKXĐ: 4-x>0
=>-x>-4
=>x<4
d: ĐKXĐ: \(\dfrac{1}{x+4}>0\)
=>x+4>0
=>x>-4
e: ĐKXĐ: \(\left(x-3\right)\left(x+9\right)>0\)
=>\(\left[{}\begin{matrix}x-3>0\\x+9< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -9\end{matrix}\right.\)
giải các bất phương trình sau
a) \(log\left(x-5\right)< 2\)
b) \(log_2\left(2x-3\right)>4\)
c) \(log_3\left(2x+5\right)\le3\)
d) \(log_4\left(4x-5\right)\ge2\)
e) \(log_3\left(1-3x\right)>3\)
a: \(log\left(x-5\right)< 2\)
=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)
b: \(log_2\left(2x-3\right)>4\)
=>\(log_2\left(2x-3\right)>log_216\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)
=>2x-3>16
=>2x>19
=>\(x>\dfrac{19}{2}\)
c: \(log_3\left(2x+5\right)< =3\)
=>\(log_3\left(2x+5\right)< =log_327\)
=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)
=>\(-\dfrac{5}{2}< x< =11\)
d: \(log_4\left(4x-5\right)>=2\)
=>\(log_4\left(4x-5\right)>=log_416\)
=>4x-5>=16 và 4x-5>0
=>4x>=21 và 4x>5
=>4x>=21
=>\(x>=\dfrac{21}{4}\)
e: \(log_3\left(1-3x\right)>3\)
=>\(log_3\left(1-3x\right)>log_327\)
=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)
=>1-3x>27
=>\(-3x>26\)
=>\(x< -\dfrac{26}{3}\)
\(\log_3\left(3^x-1\right).\log_3\left(3^{x+1}-3\right)=6\)
Lời giải:
Để ý rằng \(\log _3(3^{x+1}-3)=\log_3[3(3^x-1)]=1+\log_3(3^x-1)\)
Đặt \(\log_3(3^x-1)=t\). Khi đó PT tương đương:
\(t(t+1)=6\Leftrightarrow (t-2)(t+3)=0\Rightarrow \)\(\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)
Nếu \(t=2\rightarrow 3^x-1=9\Leftrightarrow 3^x=10\rightarrow x=\log_3(10)\)
Nếu \(t=-3\Rightarrow 3^x-1=\frac{1}{27}\Rightarrow 3^x=\frac{28}{27}\Rightarrow x=\log_3\left (\frac{28}{27}\right)\)
\(\log_3\left(9^{x+1}\right)\log_3\left(9^x+1\right)=3\)
Lời giải:
Ta có: \(\log_3(9^{x+1})\log_3(9^x+1)=3\)
\(\Leftrightarrow (x+1)\log_39\log_3(9^x+1)=3\)
\(\Leftrightarrow (x+1)\log_3(9^x+1)=\frac{3}{2}\)
Từ đây suy ra \(x+1\neq 0\)
\(\Rightarrow \log_3(9^x+1)=\frac{3}{2(x+1)}\)
\(\Leftrightarrow 9^x+1=3^{\frac{3}{2(x+1)}}\) (*)
Đạo hàm vế trái: \((9^x+1)'=\ln 9.9^x>0\), hàm đồng biến
Đạo hàm vế phải: \((3^{\frac{3}{2(x+1)}})'=\frac{-3}{2(x+1)^2}.\ln 3.3^{\frac{3}{2(x+1)}}<0\), hàm nghịch biến
Do đó PT (*) có một nghiệm duy nhất.
Đến đây việc còn lại là dò nghiệm duy nhất đó.
\(x\approx 0,3795\)
Số nghiệm của PT \(log_3\left(x^2-6\right)=log_3\left(x-2\right)+1\)
\(\log_3\left(x^2-6\right)=\log_3\left(x-2\right)+\log_33\)
\(\log_3\left(x^2-6\right)=\log_3\left[3\left(x-2\right)\right]\)
\(x^2-6=3x-6\)
\(\left\{{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Phương trình \(\log_3\dfrac{x^2-2x+1}{x}+x^2+1=3x\) có tổng tất cả các nghiệm bằng?
ĐKXĐ: \(x>0;x\ne1\)
\(log_3\left(x^2-2x+1\right)+\left(x^2-2x+1\right)=log_3x+x\)
Xét hàm \(f\left(t\right)=log_3t+t\) với \(t>0\)
\(\Rightarrow f'\left(t\right)=\dfrac{1}{t.ln3}+1>0\) \(\forall t>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow x^2-2x+1=x\Leftrightarrow x^2-3x+1=0\)
Phương trình này có tổng 2 nghiệm \(x_1+x_2=-\dfrac{b}{a}=3\)
Giải phương trình :
\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\)
Điều kiện \(\begin{cases}x\ne1\\x>\frac{1}{2}\end{cases}\)
\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\Leftrightarrow2\log_3\left|x-1\right|+2\log_3\left(2x-1\right)=2\)
\(\Leftrightarrow\log_3\left|x-1\right|\left(2x-1\right)=\log_33\)
\(\Leftrightarrow\left|x-1\right|\left(2x-1\right)=3\)
\(\frac{1}{2}\)<x<1 và \(2x^2-3x+4=0\)
hoặc x>1 và \(2x^2-3x-2=0\)
\(\Leftrightarrow x=2\) thỏa mãn điều kiện. Vậy x=2
Giải phương trình: \(\log_3\left(4^x-1\right)=\log_4\left(3^x+1\right)\)