Phân tích các đa thức sau thành nhân tử: x2 + 2x – y2 + 1
phân tích các đa thức sau thành nhân tử
a x2 - y2 -3x + 3y
b 2x + 2y -x2 + y2
c x2 -16 + y2 + 2xy
cứuuu
a) \(x^2-y^2-3x+3y\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x^2-y^2\right)\)
\(=2\left(x+y\right)-\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x+y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=x^2+y^2+2xy-16\)
\(=\left(x+y\right)^2-16\)
\(=\left(x+y+4\right)\left(x+y-4\right)\)
a) \(x^2-y^2-3x+3y\)
\(=\left(ax+y\right)\left(ax-y\right)-3.\left(x-y\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x+y\right)\left(x-y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=\left(x+y\right)\left(x-y\right)+2xy-16\)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 +4xy + y 2 ; b) ( 2 x + 1 ) 2 - ( x - 1 ) 2 ;
c) 9 - 6x + x 2 - y 2 ; d) -(x + 2) + 3( x 2 -4).
a) Áp dụng HĐT 1 thu được ( 2 x + y ) 2 .
b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được
[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).
c) Ta có: 9 - 6x + x 2 - y 2 = ( 3 - x ) 2 - y 2 = (3 - x - y)(3 -x + y).
d) Ta có: -(x + 2) + 3( x 2 - 4) = -{x + 2) + 3(x + 2)(x - 2)
= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).
Phân tích đa thức sau thành nhân tử: 2x – 2y – x2 + 2xy – y2
2x – 2y – x2 + 2xy – y2
(Có x2 ; 2xy ; y2 ta liên tưởng đến HĐT (1) hoặc (2))
= (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
(Có x – y là nhân tử chung)
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
phân tích các đa thức sau thành nhân tử: a) 4x(2x - 3y) - 8y(3y - 2x) b) 4x2 - 4xy + y2 - 9z2 c) x2y + yz + xy2 + xz d) (1 - x2)x2 - 16x2 - 16
Bạn thử xem lại đề câu d nhé.
a) Ta có: \(4x\left(2x-3y\right)-8y\left(3y-2x\right)\)
\(=4x\left(2x-3y\right)+8y\left(2x-3y\right)\)
\(=4\left(2x-3y\right)\left(x+2y\right)\)
b) Ta có: \(4x^2-4xy+y^2-9z^2\)
\(=\left(2x+y\right)^2-\left(3z\right)^2\)
\(=\left(2x+y+3z\right)\left(2x+y-3z\right)\)
c) Ta có: \(x^2y+yz+xy^2+xz\)
\(=xy\left(x+y\right)+z\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+z\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x 2 +2x-8; b) x 2 +5x + 6;
c) 4 x 2 -12x + 8; d) 3 x 2 +8xy + 5 y 2 .
Phân tích đa thức thành nhân tử
X2 - y2 + 2x + 1
\(x^2-y^2+2x+1\\=(x^2+2x+1)-y^2\\=(x+1)^2-y^2\\=(x+1-y)(x+1+y)\)
Phân tích các đa thức sau thành nhân tử:
a ) x 2 – y 2 – 2 y – 1
a) x2 – y2 – 2y – 1 = x2 - (y2 + 2y + 1)
= x2 - (y + 1)2
= (x + y + 1)(x - y - 1)
x/y có phải đơn thức ko
phân tích đa thức sau thành nhân tử
a) x2-2x+1
b)x2+2xy-25+y2
c)5x2-10xy
d)x2-y2+x-y
Lời giải:
$\frac{x}{y}$ không phải đơn thức bạn nhé.
a. $x^2-2x+1=(x-1)^2$
b. $x^2+2xy-25+y^2=(x^2+2xy+y^2)-25=(x+y)^2-5^2=(x+y-5)(x+y+5)$
c. $5x^2-10xy=5x(x-2y)$
d. $x^2-y^2+x-y=(x^2-y^2)+(x-y)=(x-y)(x+y)+(x-y)$
$=(x-y)(x+y+1)$
Phân tích đa thức B = x2 + 2x + 1 – y2 thành nhân tử
\(=\left(x+1-y\right)\left(x+1+y\right)\)