so sánh
A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
B=3^32+-1
Giup minh cau nay voi
bai 5 : tinh
a) tim x , biet (x+1) +(x+2 ) + ...+(x+100)=5750
b) chung minh rang B = 1/2^2 + 1/3^2 + 1/4^2 + ...+1/2021^2 < 1
giup mik luon voi
\(∘backwin\)
\(a ) ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750\)
\( ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750 \)
\( 100 x + ( 1 + 100 ) ×100 : 2 = 5750\)
\(100 x + 5050 = 5750\)
\( 100 x = 5750 − 5050\)
\(100 x = 700\)
\(x = 700 : 100\)
\(x = 7\)
\(b,\) \(B=\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020}+2021\)
\( B < 1 -\)\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)
\(B<1-\)\(\dfrac{1}{2021}\)
\(B<\)\(\dfrac{2020}{2021}\)
\(\dfrac{2020}{2021}< 1\)
\(B<1\)
a) (x+1) +(x+2 ) + ...+(x+100)=5750
= 100x + (1+2+3+...+100) = 5750
=100x + 5050 = 5750
--> 100x = 5750-5050=700
--> x=7
b) Ta thấy: 1/2^2 < 1/2.3
1/3^2 < 1/3.4
...
1/2021^2 < 1/2021.2022
--> B=1/2^2 + 1/3^2 + 1/4^2 + ...+ 1/2021^2 < 1/2.3 + 1/3.4 + ... +1/2021.2022 (1)
Ta có: 1/2.3 + 1/3.4 + ... +1/2021.2022
=1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2021 - 1/2022
=1/2 - 1/2022 < 1 (2)
Từ (1) và (2) --> B<1 (đpcm)
<
1.Chứng minh rằng a)1/2-1/4+1/8-1/16+1/32-1/64<1/3 b)1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
So sánh
A=3^32-1
B=(3+1).(3^2+1).(3^4+1).(3^8+1).(3^16 +1).2
B=(3+1).(3^2+1).(3^4+1).(3^8+1).(3^16 +1).2
=>B=2.(3+1)(32+1)(34+1)(38+1).(316+1)
=(3-1)(3+1)(32+1)(34+1)(38+1).(316+1)
=(32-1)(32+1)(34+1)(38+1).(316+1)
=(34-1)(34+1)(38+1).(316+1)
=(38-1)(38+1).(316+1)
=(316-1)(316+1)
=332-1=A
Vậy A=B
\(B=2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^4-1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^8-1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right).\left(3^{16}+1\right)\)
\(=3^{32}-1\)
Vậy A = B = 332 - 1
ta có A=332-1=(316+1)(316-1)=(316+1)(38+1)(38-1)=(316+1)(38+1)(34+1)(34-1)
=(316+1)(38+1)(34+1)(32+1)(32-1)=(316+1)(38+1)(34+1)(32+1)(3+1)(3-1)=B
=> A=B
Chứng minh rằng:
a) 1/2-1/4+1/8-1/16+1/32-1/64<1/3
b) 1/3-2/3^2+3/3^3-3/3^4+...+99/3^99-100/3^100<3/16
18 So sánh 2 số: A=3^32-1 và B=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2B=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2B=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(B=\dfrac{3^{32}-1}{2}< A=3^{32}-1\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =>2B=2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)=3^{32}-1\\ =>A=\dfrac{3^{32}-1}{2}< B\)
\(B=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)=\dfrac{\left(3-1\right)\left(3+1\right)...\left(3^{16}+1\right)}{2}=\dfrac{\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)}{2}=\dfrac{\left(3^4-1\right)\left(3^4+1\right)...\left(3^{16}+1\right)}{2}=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^8+16\right)}{2}=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}=\dfrac{3^{32}-1}{2}=\dfrac{A}{2}\)
Vậy \(A=2B\)
So sánh A và B: A=(43^2+1)(3^4+1)(3^8+1)(3^16+1); B=3^32-1
So sánh :
A= 4 x ( 3^2+1 ) x ( 3^4+1 ) x ( 3^8+1 ) x ( 3^16+1 ) và B= 3 ^32 -1
\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
Vậy \(A< B\)
So sánh 2 số A và B biết :
A = (3+1)(2^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
A = (2-1)(2+1)(2^2 + 1 ) (2^4 + 1 ) ( 2^8 + 1) ( 2^16 + 1)
A = (2^2 - 1)(2^2 + 1 ) ( 2^4 + 1 )(2^8 + 1 )(2^16 + 1)
A= ( 2^4 - 1 )( 2^4 + 1 )(2^8 + 1 )(2^16 + 1 )
A = (2^8 - 1 )(2^8 + 1 )(2^16 + 1 )
A = (2^16 - 1 )(2^16 + 1 )
A = 2^32 - 1 < 2^32 = B
Vậy A = B
k mik nka !
sao sanh A=\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\) ) voi B=\(3^{32}\)
A*2=(3-1)*(3+1)*(3^2+1)*....*(3^16+1)
A*2=(3^2-1)*(3^2+1)*(3^4+1)....*(3^16+1)
A*2=((3^4)^2-1^2)*(3^4+1)......*(3*16+1)
2*A=(3^8-1)*...(3^16+1)
bạn lm tiếp nha
\(B=3^{32}-1=\left(3^{16}+1\right)\left(3^{16}-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^8-1\right)\)
\(=\)\(\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^{\text{4}}+1\right)\left(3^2+1\right)\left(3^2-1\right)\)
\(=\left(3^{16}+1\right)\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)\)
\(=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(B=2A\)
đúng 100% k nha