\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2B=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2B=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(B=\dfrac{3^{32}-1}{2}< A=3^{32}-1\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =>2B=2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)=3^{32}-1\\ =>A=\dfrac{3^{32}-1}{2}< B\)
\(B=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)=\dfrac{\left(3-1\right)\left(3+1\right)...\left(3^{16}+1\right)}{2}=\dfrac{\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)}{2}=\dfrac{\left(3^4-1\right)\left(3^4+1\right)...\left(3^{16}+1\right)}{2}=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^8+16\right)}{2}=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}=\dfrac{3^{32}-1}{2}=\dfrac{A}{2}\)
Vậy \(A=2B\)