Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Huy Anh
Xem chi tiết
cha gong-won
Xem chi tiết
Quỳnh Hà
25 tháng 9 2016 lúc 10:37

a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-\sqrt{2}\)

    \(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)}{2}}-\sqrt{2}=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)}}{\sqrt{2}}-\sqrt{2}\)

    \(=\frac{\left|\sqrt{3}+\sqrt{2}\right|}{\sqrt{2}}-\frac{\left|\sqrt{3}-\sqrt{2}\right|}{\sqrt{2}}-\sqrt{2}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}-\frac{2}{\sqrt{2}}\)

     =  \(\frac{2\sqrt{2}-2}{\sqrt{2}}=\sqrt{2}-1\)

b, Tương tự

Trương Thị Mỹ Duyên
Xem chi tiết
N
4 tháng 7 2017 lúc 21:12

* \(\sqrt{2}\)A = \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}=\sqrt{7}-1-\left(\sqrt{7}+1\right)+\sqrt{14}=\sqrt{14}-2\)

=> A = \(\sqrt{7}-\sqrt{2}\)

* B là 6,5 hay 6*5 vậy bạn

nếu 6,5 thì : B cũng nhân \(\sqrt{2}\) biểu thức trở thành

\(\sqrt{2}B=\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}+4\sqrt{3}=\sqrt{\left(1+\sqrt{12}\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}+4\sqrt{3}=1+\sqrt{12}+\sqrt{12}-1+4\sqrt{3}=4\sqrt{3}+4\sqrt{3}=8\sqrt{3}\)

=> B = \(\dfrac{8\sqrt{3}}{\sqrt{2}}=4\sqrt{6}\)

nếu 6*5 thì : bạn tách hai căn đầu thành một biểu thức rồi bình phương lên rồi giải , sau đó trục căn , biểu thức luôn dương nhé , mấy bài này nếu không thể tách thì làm cách này cũng được

* C thì mik chỉ bít pt được nhiu đây thôi , bạn thông cảm nhé\(\sqrt{29-6\sqrt{20}}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}+3=2\sqrt{5}-3\)

* D = \(\sqrt{13-2\cdot2\sqrt{2}\cdot\sqrt{5}}-\sqrt{53+2\cdot2\sqrt{2}\cdot3\sqrt{5}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}=-4\sqrt{5}\)

Mỹ Duyên
4 tháng 7 2017 lúc 21:29

Câu C có sai đề ko? Tui sửa đây!

Ta có: \(C=\sqrt{46+6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

=> \(C=\sqrt{45+2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\)

=> \(C=\sqrt{\left(3\sqrt{5}+1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

=> \(C=\left|3\sqrt{5}+1\right|-\left|2\sqrt{5}-3\right|\)

=> \(C=3\sqrt{5}+1-2\sqrt{5}+3=4+\sqrt{5}\)

Vũ thanh Hiền
Xem chi tiết
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 13:57

a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)

\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)

\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)

b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)

\(=\dfrac{1}{n+1}\)

d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)

\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)

\(=-17-12400=-12417\)

e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)

\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)

Ngô Văn Phương
Xem chi tiết
mad vocaloid
Xem chi tiết
Vũ Thị Khánh Huyền
Xem chi tiết
Luân Đào
10 tháng 1 2018 lúc 18:35

a,

\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\sqrt{2}\cdot\dfrac{\sqrt{2^5}}{1-\sqrt{9}}\)

\(=2^2-\left(\sqrt{3}\right)^2+\dfrac{\sqrt{2}\cdot\sqrt{2^5}}{1-3}=4-3+\dfrac{\sqrt{2^6}}{-2}=1+\dfrac{8}{-2}=1+\left(-4\right)=-3\)

b,

\(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\right)\cdot\dfrac{49}{50}\)

\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\cdot\dfrac{49}{50}\)

\(=\left(1-\dfrac{1}{50}\right)\cdot\dfrac{49}{50}=\dfrac{49}{50}\cdot\dfrac{49}{50}=\dfrac{49^2}{50^2}=\dfrac{2401}{2500}\)

Vũ Thị NGọc ANh
Xem chi tiết
Nguyễn Quốc Gia Huy
17 tháng 9 2017 lúc 8:28

b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)

\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)