Tìm Min A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)
Tìm min:
A=x2+2y2+3z2-2xy+2xz-2x-2y-8z+2010
Giúp mk với, mk cần gấp
\(A=x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2010\)
\(=x^2-2x\left(y-z+1\right)+\left(y-z+1\right)^2+y^2+2z^2-4y+2yz-6z+2009\)
\(=\left[x-\left(y-z+1\right)\right]^2+y^2-2y\left(2-z\right)+\left(2-z\right)^2-\left(2-z\right)^2+2z^2-6z+2009\)
\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+z^2-2z+2005\)
\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+\left(z-1\right)^2+2004\ge2004\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+z-1=0\\y-2+z=0\\z-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)
Vậy \(B_{min}=2004\Leftrightarrow x=y=z=1\)
tìm Min
x2 + 2y2 + 3z2 - 2xy + 2xz - 2x -2y -8z +2002
x2 + 15y2 + xy + 8x + y +1992
Tìm Min:
1, U = x2 + 2y2 + 3z2 - 2xy + 2xz - 2x - 2y - 8z + 2006
2, P = x -2\(\sqrt{xy}\) + 3y - 2\(\sqrt{x}\) + 2004,5 (x, y không âm)
Tìm giá trị nhỏ nhất của: B=x2+2y2+3z2-2y+2xz-2xy-2x-8z+2024
Tính giá trị nhỏ nhất của biểu thức
P=X^2 + Y^2 + XY + X + Y
Q=X^2 + XY + Y^2 - 3X - 3Y + 2017
F=X^2 + 2Y^2 + 3Z^2 - 2XY + 2XZ - 2X - 2Y - 8Z + 1998
M=(X+1)^2 + (X-3)^2 + (Y-2)^2 + 4
Giải phương trình:
a.x2+y2+3z2+2xz-2x-2y-2xy-8z+6=0
b.\(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
Tìm GTNN:
D = \(x^2+2y^2+3z^2-2xy+2zx-2x-2y-8z+19\)
\(D=x^2+y^2+z^2-2xy+2zx-2yz+y^2+2z^2+2yz-2\left(x-y+z\right)-4y-6z+19\)
\(=\left(x-y+z\right)^2-2\left(x-y+z\right)+1+\left(y^2+z^2+2yz-4y-4z+4\right)+z^2-2z+1+13\)
\(=\left(x-y+z-1\right)^2+\left(y+z-2\right)^2+\left(z-1\right)^2+13\ge13\)
\(D_{min}=13\) khi \(\left\{{}\begin{matrix}x-y+z=1\\y+z=2\\z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)
Tìm nghiệm nguyên của các phương trình
a/ 2x^2-xy-6y^2+13y-3x+7=0
b/ 3x^2+10xy+8y^2=21
c/ 2x^2+y^2+2z^2-2xy+2xz=12
d/ x^2+2y^2+3z^2+4t^2+2xy+2xz+2xt+4yz-2zt=10
e/ 3x^2y+5xy-8y-x^2-10x=4
x^2+2y^2+3z^2+2xy+2xz-4x-6