Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tùng Triệu
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Le Thi Khanh Huyen
30 tháng 7 2017 lúc 20:37

chết chép thiếu

Rau
30 tháng 7 2017 lúc 23:27

Nhân \(R\)Vào đi
Áp dụng : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R.\)
Done :D
 

An Sở Hạ
Xem chi tiết
Châu Đặng Huỳnh Bảo
Xem chi tiết
quangduy
Xem chi tiết
Akai Haruma
10 tháng 3 2019 lúc 17:01

Lời giải:

a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)

\(\Rightarrow \frac{1}{\sin A}=\frac{2}{\sin B+\sin C}\)

\(\Rightarrow 2\sin A=\sin B+\sin C\) (đpcm)

b) Theo định lý sin ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)

\(\Rightarrow (\frac{a}{\sin A})^2=\frac{b}{\sin B}.\frac{c}{\sin C}=\frac{a^2}{\sin B.\sin C}\)

\(\Rightarrow \sin ^2A=\sin B.\sin C\) (đpcm)

le duc minh vuong
Xem chi tiết
Phùng Khánh Linh
1 tháng 10 2018 lúc 20:00

Violympic toán 9

MINH HÀ
16 tháng 3 2021 lúc 20:39

Lời giải:

a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:

asinA=bsinB=csinC=b+csinB+sinC=2asinB+sinCasin⁡A=bsin⁡B=csin⁡C=b+csin⁡B+sin⁡C=2asin⁡B+sin⁡C

⇒1sinA=2sinB+sinC⇒1sin⁡A=2sin⁡B+sin⁡C

⇒2sinA=sinB+sinC⇒2sin⁡A=sin⁡B+sin⁡C (đpcm)

b) Theo định lý sin ta có:

asinA=bsinB=csinCasin⁡A=bsin⁡B=csin⁡C

⇒(asinA)2=bsinB.csinC=a2sinB.sinC⇒(asin⁡A)2=bsin⁡B.csin⁡C=a2sin⁡B.sin⁡C

⇒sin2A=sinB.sinC⇒sin2⁡A=sin⁡B.sin⁡C (đpcm)

Thiện Nguyễn
Xem chi tiết
yến
Xem chi tiết
Ngô Thành Chung
2 tháng 3 2021 lúc 15:36

b + c = 2a

⇔ \(\dfrac{b+c}{2R}=\dfrac{2a}{2R}\) (1) với R là bán kính đường tròn ngoại tiếp

Theo định lí sin \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

nên (1) ⇔ sinB + sinC = 2sinA

Chọn B

quynh ngan
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 7 2016 lúc 11:03

A B C H K

Từ A kẻ đường cao AH (H thuộc BC) , Từ B kẻ đường cao BK (K thuộc AC)

Ta có : \(sinA=\frac{BK}{AB}\) ; \(sinB=\frac{AH}{AB}\) ; \(sinC=\frac{AH}{AC}\)

\(\Rightarrow\frac{AB}{sinC}=\frac{AB}{\frac{AH}{AC}}=\frac{AB.AC}{AH}\) ; \(\frac{AC}{sinB}=\frac{AC}{\frac{AH}{AB}}=\frac{AB.AC}{AH}\)

\(\Rightarrow\frac{c}{sinC}=\frac{b}{sinB}\) (1)

Lại có : \(BK=sinC.BC\Rightarrow\frac{BC}{sinA}=\frac{BC}{\frac{BK}{AB}}=\frac{BC.AB}{BK}=\frac{AB.BC}{sinC.BC}=\frac{AB}{sinC}\)

\(\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\) (2)

Từ (1) và (2) ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\) (Đpcm)