Biết AB // CD và AB=CD
a) Chứng minh AC // BD và AC=BD
b) Chứng minh AD và BC cắt nhau ở O là trung điểm mỗi đoạn
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) Chứng minh: AC=BD và AC//BD
b) Chứng minh: AD=BC và AD//BC
c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O, N thẳng hàng.
mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) Chứng minh: AC=BD và AC//BD
b) Chứng minh: AD=BC và AD//BC
c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O, N thẳng hàng.
Ta có hình vẽ:
a/ Xét tam giác OAC và tam giác OBD có:
OA = OB (GT)
góc AOC = góc BOD (đối đỉnh)
OC = OD (GT)
=> tam giác OAC = tam giác OBD (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)
=> góc CAO = góc OBD (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AC // BD (đpcm)
b/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
góc AOD = góc BOC (đối đỉnh)
OC = OD (GT)
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)
=> góc DAO = góc CBO (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AD // BC 9đpcm)
c/ Ta có: COM = DON (đối đỉnh)
Ta có: góc AOD + góc AOM + góc COM = 1800
=> góc AOD + góc AOM + góc DON = 1800
hay góc MON = 1800
hay M,O,N thẳng hàng
a) Xét ΔCAO và ΔDBO có:
OA=OB (gt)
\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)
OC=OD (gt)
=> ΔCAO=ΔDBO (c.g.c)
=> AC=BD (hai cạnh tương ứng)
Vì ΔCAO=ΔDBO
=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên
=> AC//BD. (đpcm)
b) Xét ΔAOD và ΔBOC có:
OA=OB (gt)
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)
OD=OC (gt)
=> ΔAOD=ΔBOC (c.g.c)
=> AD=BC (hai cạnh tương ứng)
Vì ΔAOD=ΔBOC
=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên
=> AD//BC (đpcm)
c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)
Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)
=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)
Vậy ba điểm M,O,N thẳng hàng
Cho đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh
a)∆AOD = ∆BOC
b)AC // BD và AC = BD
c)CB // AD và AD = BC
d)Lấy điểm I thuộc AD, K thuộc BC sao co AI = BK. Chứng minh rằng: O là trung điểm IK
Cho hình vẽ, biết AB // CD và AB = CD.
a) Chứng minh BC // AD và BC = AD
b) AC cắt BD ở O. Chứng minh O là trung điểm của AC và BD.
c) Gọi M, N lần lượt là trung điểm của AB và CD. BD trát CM và AN lần lượt tại I và J. Chứng minh BI = IJ = JD
Hai đường thẳng AC và BD cắt nhau ở trung điểm O của mỗi đoạn. Chứng minh :
a) AD = BC, AB = DC
b) CDA = CBA, BAD = BCD
Xét tam giác AOD và tam giác COB có:
OA=OC(O là trung điểm AC)
^AOD=^BOC(hai góc đối đỉnh)
OD=OB(O là trung điểm BD)
=>tam giác AOD=tam giác COB(c.g.c)
=>AD=BC(hai cạnh tương ứng )
Xét tam giác AOB và tam giác COD có:
OB=OD(O là trung điểm BD)
^AOB=^DOC(hai góc đối đỉnh)
OA=OC(O là trung điểm AC)
=> tam giác AOD=tam giác COD(c.g.c)
=>AB=DC(hai cạnh tương ứng)
À sorry bn ạ. Tại mình quên ko nhìn câu b nên chưa làm. Giờ mình làm nốt ạ. Và cũng ko có ý kiếm điểm hay gì đó đâu ạ :)
Xét ΔABC và ΔCDA có:
AC:cạnh chung
AB=DC
BC=AD
=>ΔABC = ΔCDA(c.c.c)
=>^CDA=^CBA (hai góc tương ứng)
Xét ΔBAD và ΔDCB có:
AB:cạnh chung
AB=DC
AD=BC
=>ΔBAD=ΔDCB(c.c.c)
=>^BAD =^BCD(hai góc tương ứng)
Cho hai đoạn thẳng ab và cd cắt nhau tại trung điểm o của mỗi đoạn thẳng ab chứng minh ac = ab ; ac//bd; ad= bc và ad // b. vẽ ca vông góc với ab h là tia đối của dh lấy điểm i sao cho oy=oh chứng minh di vông góc ab
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AD//BC; AC//BD
cho hai đoạn thẳng ab và cd cắt nhau tại trung điểm o của mỗi đoạn thẳng ab chứng minh ac = ab ; ac//bd; ad= bc và ad // b. vẽ ca vông góc với ab h là tia đối của dh lấy điểm i sao cho oy=oh chứng minh di vông góc ab
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD; AD//BC
Vẽ hình sau: Cho 2 đoạn thẳng AC và BD giao nhau tại trung điểm O của mỗi đoạn. Chứng minh:
a) AD = CD; AD // BC.
b) góc CDA = góc ABC.
c) Lấy M trên DC và lấy N trên AB sao cho DM = BN. Chứng minh M; O; N thẳng hàng.
d) Lấy E; F là trung điểm AD; BC. Chứng minh O là trung điểm EF.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
b: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
=>AB=CD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
=>\(\widehat{ABC}=\widehat{CDA}\)
c: Xét ΔOBN và ΔODM có
OB=OD
\(\widehat{OBN}=\widehat{ODM}\)
BN=DM
Do đó: ΔOBN=ΔODM
=>\(\widehat{BON}=\widehat{DOM}\)
mà \(\widehat{DOM}+\widehat{BOM}=180^0\)
nên \(\widehat{BON}+\widehat{BOM}=180^0\)
=>\(\widehat{MON}=90^0\)
=>M,O,N thẳng hàng
d: Xét ΔOAE và ΔOCF có
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)
Do đó: ΔOAE=ΔOCF
=>\(\widehat{AOE}=\widehat{COF}\)
mà \(\widehat{AOE}+\widehat{EOC}=180^0\)
nên \(\widehat{COF}+\widehat{COE}=180^0\)
=>\(\widehat{FOE}=180^0\)
=>F,O,E thẳng hàng
mà OE=OF
nên O là trung điểm của EF
Biết AC cắt BD tại O trung điểm mỗi đoạn.
Chứng minh:
a, AB//CD và AB=CD b, AD//BC và AD=BC
Xét \(\Delta\)AOB và \(\Delta\)COD. TA CÓ:
BO=OD
OA=OC
AOB=COD(đối đỉnh)
=> \(\Delta\)AOB=\(\Delta\)COD(c-g-c)
=>AOB=COD(hai góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD