Cho hình thang ABCD ( AB//CD), Gọi M,N lần lượt là trung điểm của AB<CD, O là giao điểm của AC và BD; I là giao điểm của AD,BC
a) chứng minh O,I,M,N thẳng hàng
b) Qua O kẻ đường thẳng song song với AB cắt AD,BC lần lượt tại E,F. Chứng minh OE=OF
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
Cho hình thang ABCD (AB//CD). M là trung điểm của CD. AM cắt BD tại I. BM cắt AC tại K. KI cắt BD, BC lần lượt tại E là F. Gọi N là trung điểm của AB, O là giao điểm của AC và BD. Chứng minh M, O, N thẳng hàng.
cho hình thang ABCD (AB//CD, AB<CD)
a/ gọi I là giao điểm của ACvà BD. đường thẳng qua I // AB cắt AD, BC tại M,N. chứng minh IM=IN
b/ gọi E trung điểm CD, gọi P là giao điểm AE và BD, O là giao điểm BFvà AC
c/ chứng minh PQ // AC
d/ đường thẳng PQ cắt AD và BC lần lượt tại X,Y. chứng minh XP=PQ=QY
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành b) Gọi I, J lần lượt là trung điểm của AC và BD. Chứng minh rằng các đoạn thẳng MP, QN, IJ đồng quy tại một điểm.
Cho hình thang ABCD có AB//CD (AB<CD), M là trung điểm AD. Qua M vẽ đường thẳng // với 2 đáy của hình thang cắt 2 đường chéo BD và AC lần lượt tại E,F.
a) Chứng minh N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trưng điểm AB, đường thẳng vuông góc với IE cắt với nhau tại E và đường thẳng vuông góc với IF tại F cắt nhau tại K. Chứng minh KC=KD
Cho hình thang ABCD có AB song song CD ( AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E,F.
a)Chứng minh rằng N,E,F lần lượt là trung điểm của BC,BD,AC.
b)Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K.Chứng minh KC=KD
cho hình thang ABCD ( AB // CD ) , O là giao điểm của AC và BD , E là giao điểm của AD và BC .
M , N lần lượt là trung điểm của AB và CD . Một đường thẳng d bất kì // với 2 đáy AB và CD cắt các cạnh bên
AD và BC tại H , K và cắt AC , BD tại P , Q
a) Chứng minh HP=KQ
b) Chứng minh E,O,M,N thẳng hàng
Cho hình thang cân ABCD, biết AB//CD. Gọi O là giao điểm của hai đường chéo AC và BD.
1) Chứng minh rằng tam giác AOB cân tại O.
2) Gọi M, N, P lần lượt là trung điểm của AD, BD và BC. Gọi E là giao điểm của AN với cạnh DC. Chứng minh rằng M, N, P thẳng hàng và tứ giác ADEB là hình bình hành.
3)Chứng minh rằng AB+BC+CD+DA/4<AC<AB+BC+CD+DA/2