Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Nguyễn Phương Uyên

Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.

a) Chứng minh: AC=BD và AC//BD

b) Chứng minh: AD=BC và AD//BC

c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O, N thẳng hàng.

Trương Hồng Hạnh
16 tháng 12 2016 lúc 9:53

Ta có hình vẽ:

O A B C D M N

a/ Xét tam giác OAC và tam giác OBD có:

OA = OB (GT)

góc AOC = góc BOD (đối đỉnh)

OC = OD (GT)

=> tam giác OAC = tam giác OBD (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)

=> góc CAO = góc OBD (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AC // BD (đpcm)

b/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

góc AOD = góc BOC (đối đỉnh)

OC = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)

=> góc DAO = góc CBO (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AD // BC 9đpcm)

c/ Ta có: COM = DON (đối đỉnh)

Ta có: góc AOD + góc AOM + góc COM = 1800

=> góc AOD + góc AOM + góc DON = 1800

hay góc MON = 1800

hay M,O,N thẳng hàng

Học Giỏi Đẹp Trai
17 tháng 12 2016 lúc 12:20

A B C D O M N a) Xét ΔCAO và ΔDBO có:

OA=OB (gt)

\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)

OC=OD (gt)

=> ΔCAO=ΔDBO (c.g.c)

=> AC=BD (hai cạnh tương ứng)

ΔCAO=ΔDBO

=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên

=> AC//BD. (đpcm)

b) Xét ΔAOD và ΔBOC có:

OA=OB (gt)

\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)

OD=OC (gt)

=> ΔAOD=ΔBOC (c.g.c)

=> AD=BC (hai cạnh tương ứng)

ΔAOD=ΔBOC

=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên

=> AD//BC (đpcm)

c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)

Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)

=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)

Vậy ba điểm M,O,N thẳng hàng

 

Vũ Thùy Linh
17 tháng 12 2016 lúc 22:15

bạn vẽ hình đẹp thế, mik vẽ mãi ko ra


Các câu hỏi tương tự
Ella Marion Samantha
Xem chi tiết
Võ Thanh Tùng
Xem chi tiết
Hà Thu Nguyễn
Xem chi tiết
Nguyễn Thị Ngọc Bảo
Xem chi tiết
Nguyễn Thị Ngọc Bảo
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
ngoc an
Xem chi tiết
kudo shinichi
Xem chi tiết
Simon Nguyễn Huy
Xem chi tiết