Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng
a. CM: AC=DB và AC song song với DB
b. CM: AD=CB và AD song song với CB
c. CM: góc ACB = góc BDA
d. Vẽ CH vuông góc với AB tại H. Trên tia đối của tia OH lấy điểm I sao cho OI=OH. CM: DI vuông góc với AB
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) Chứng minh: AC=BD và AC//BD
b) Chứng minh: AD=BC và AD//BC
c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O, N thẳng hàng.
1/ Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng
Vẽ CH vuông góc với AB tại H. Trên tia đối của tia OH lấy điểm I sao cho OI=OH. CM: DI vuông góc với AB
2/ Cho đoạn thẳng AB có O là trung điểm. Trên 2 nửa mp đối nhau bờ AB, vẽ các tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD. Trên cạnh BC lấy điểm E và trên cạnh AD lấy điểm F sao cho BE=AF. CM: O là trung điểm EF
Giúp mình với nha, mình cần gấp lắm
Cho ΔABC vuông tại A có AB < AC. Vẽ AH ⊥ BC taaji H. Vẽ HI ⊥ AB tại I. Trên tia HI lấy điểm D sao cho I là trung điểm của DH
a) Chứng minh: Δ ADI = Δ AHI
b) Chứng minh: AD ⊥ BD
c) Cho BH = 9cm và HC = 16cm. Tính AH
d) Vẽ HK ⊥ AC tại K trên tia HK lấy điểm E sao cho K là trung điểm của HE. Chứng minh: DE < BD + CE
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Cho tam giác ABC,trên tia đối của tia AB lấy điểm D và trên tia đối của tia AC lấy E sao cho AD = AB ; AE=AC
a ) Chứng minh DC = DE
b ) chứng minh BC // DE
c ) đường thẳng xy qua A cắt BC ; DE lần lượt tại M và N. Chứng minh A là trung điểm của MN.
Cho tam giác ABC có AB<AC trên cạnh AC lấy điểm D sao cho AD = AB gọi M là trung điểm của đoạn BD:
a) TM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
b)Trên tia đối của tia BA lấy điểm E sao cho BE=DC Chứng minh rằng ba điểm E,K,D thẳng hàng
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.