vẽ 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) C/m: AC = BD
b) C/m: AD // BC
c) Lấy điểm M trên cạnh AC, điểm N trên cạnh BD sao cho AM = BN . C/m O là trung điểm MN
Cho tam giác ABC có AB<AC trên cạnh AC lấy điểm D sao cho AD = AB gọi M là trung điểm của đoạn BD:
a) TM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
b)Trên tia đối của tia BA lấy điểm E sao cho BE=DC Chứng minh rằng ba điểm E,K,D thẳng hàng
Cho đoạn thẳng AB và C nằm giữa A,B nhưng không nằm trùng với trung điểm của đoạn thẳng AB.Trên 2 nửa mặt phẳng đối nhau bờ AB kẻ 2 tia Ax,By vuông góc với AB.Trên tia Ax lấy 2 điểm M,M', trên tia By lấy 2 điểm N,N' sao cho AM=BC, BN=AC,AM'=AC,BN'=BC.CMR :
a/MC=NC;AN=BM';AN'=BM
b/AN//BM' và AN'//BM
c/ MN' và M'N cắt nhau tại trung điểm O của đoạn thẳng AB
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác nhọn ABC (AB<AC), điểm M là trung điểm BC. Kẻ tia Ax//BM, trên tia Ax lấy điểm D sao cho: AD=BM(M và D khác phía đối với AB). Gọi I là trung điểm của AB.
a, CM: tam giác AID= tam giác BIM.
b,CM: tam giác AIM= tam giác BID, AM//BD.
c, Đường trung trực của BC cắt AC tại E, tia BE cắt đường thẳng Ax tại F.CMR:BE=AC
d, Hai đường thẳng AB và FC cắt nhau ở O. CMR: O,E,M thẳng hàng.
Bài 1 Cho tam giác ABC . Trên tia đối của tia AB lấy điểm F sao cho AB = FA. Trên tia đối của tia AC lấy điểm E sao cho AC = AE.
a) Chứng minh: Δ EAF = Δ CAB
b)Gọi K là trung điểm EF và D là trung điểm BC. Chứng minh : KB = FD.
d) Chứng minh: K, A, D thẳng hàng.
Bài 2 :Cho Δ ABC có M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
a) Chứng minh Δ MAD = Δ MBC và AD // CB.
b) Lấy N thuộc AD; NM cắt BC tại P. Chứng minh AN = BP.
c) Trên nửa mặt phẳng bờ AB không chứa điểm D, vẽ tia AE sao cho
góc EAB + góc ABC = 180^0 . Chứng tỏ D, A, E thẳng hàng.
Giúp mình với
Cho hai đoạn thẳng AB và CD cắt nhau tạ trung điểm O của mỗi đoạn.
a, Chứng minh AC = BD và AC // BD; AD = BC và AD // BC.
b, Vẽ CH \(\perp\) AB tại H. Trên tia đối của tia OH lấy điểm I sao cho OI = OH. Chứng minh DI = AB
Bài tập : Cho tam giác ABC , K là trung điểm của AB , E là trung điểm của AC . Trên tia đối của tia KC lấy điểm M sao cho KM = KC . Trên tia đối của tia EB lấy điểm N sao cho EN = ED .
a. Chứng minh : AM = BC và AM // BC
b. Chứng minh : AN =BC và AN // BC
c. Chứng minh : A là trung điểm của MN
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy