giải pt vô tỉ
\(\sqrt{5-2x}=\sqrt{x-1}\)
Giải PT vô tỉ:
\(\sqrt{14x+7}-\sqrt{2x+3}=\sqrt{5x+1}\)
\(\Leftrightarrow\sqrt{14x+7}-7-\left(\sqrt{2x+3}-3\right)=\sqrt{5x+1}-4\)
\(\Leftrightarrow\dfrac{14x+7-49}{\sqrt{14x+7}+7}-\dfrac{2x+3-9}{\sqrt{2x+3}+3}=\dfrac{5x+1-16}{\sqrt{5x+1}+4}\)
\(\Leftrightarrow\dfrac{14x-42}{\sqrt{14x+7}+7}-\dfrac{2x-6}{\sqrt{2x+3}+3}=\dfrac{5x-15}{\sqrt{5x+1}+4}\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{14}{\sqrt{14x+7}}-\dfrac{2}{\sqrt{2x+3}+3}-\dfrac{5}{\sqrt{5x+1}+4}\right)=0\Leftrightarrow x=3\)
giải pt vô tỉ
\(\sqrt{2x+1}+\sqrt[3]{3x-4}=5\)
Căn bậc 3
Phương trình vô tỉ
Khóc lắm bạn ơi *_*
ĐKXĐ: \(x\ge\frac{-1}{2}\)
\(\sqrt{2x+1}+\sqrt[3]{3x-4}=5\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(\sqrt[3]{3x-4}-2\right)=0\)
\(\Leftrightarrow\frac{2x+1-9}{\sqrt{2x+1}+3}+\frac{3x-4-8}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}=0\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{3\left(x-4\right)}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}\)\(\Leftrightarrow\left(x-4\right)\left[\frac{2}{\sqrt{2x+1}+3}+\frac{3}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}\right]=0\Leftrightarrow x-4=0\)
\sqrt{x}\times\sqrt{6x-5}=x^{3}+2x^{2}-2x-1
pt vô tỉ ạ.
giải pt vô tỉ
\(x+\sqrt{5+\sqrt{x-1}}=6\)
B1:Giải pt vô tỉ sau 4\(x^4\)+\(x^2\)+3x+4=3\(\sqrt[3]{16x^3+12x}\)
B2:Giải pt vô tỉ sau 4\(x^2\)-11x+10=(x-1)\(\sqrt{2x^2-6x+2}\)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
Chi tiết một chút!
Bài 2:
ĐKXĐ:....
Đặt \(\sqrt{2x^2-6x+2}=t\ge0\Rightarrow2x^2-6x+2=t^2\)
Viết lại pt dưới dạng:
\(t^2+\left(x-1\right)t-6x^2+17x-12=0\)
\(\Leftrightarrow\left(t-2x+3\right)\left(t+3x-4\right)=0\)
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
Giải PT vô tỉ trên
\(pt\Rightarrow\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2-x\\ \Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=\left(2-x\right)^2\\ \Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}=\left(x-2\right)^2\\ \Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=x-2\left(1\right)\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2-x\left(2\right)\end{matrix}\right.\)
Tới đây giải \(pt\left(1\right)\left(2\right)\), sau đó thế lại vào cái pt ban đầu, từ đó nhận hoặc loại nghiệm tìm được
( Không giải được 2 cái kia thì cmt nhắc nha )
ĐKXĐ: \(x\ge-\dfrac{1}{4}\)
Ta có: \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}}=2\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)
\(\Leftrightarrow x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}=2\)
\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}=-\dfrac{5}{2}\left(loại\right)\\\sqrt{x+\dfrac{1}{4}}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{9}{4}\)
hay x=2(thỏa ĐK)
Vậy: x=2
Giải PT vô tỉ;
\(\sqrt{x}\text{+}\sqrt{x\text{\text{- }}5}\text{+}\sqrt{x\text{+}7}=9\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+x^2+2x+1=0\)
\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)
Dễ thấy: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1>0\)
Nên (x+1)2=0 =>x+1=0 =>x=-1
Giải PT vô tỉ sau : 4\(^{x^2}\)-11x+10=(x-1)\(\sqrt{2x^2-6x+2}\)
sai đề rồi phải là 4x^2 chứ sao nó nhảy hẳn lên thế kia
câu 178 )
cậu đặt cái căn bậc 4 là a và b , cậu trừ đi để nó hết x nhé, , rồi lập hệ phương trình
câu)179
cậu đặt \(\sqrt[3]{3x-2}=a,\sqrt{6-5x}=b\)
thì ta có \(5a^3+3b^2=8,b=\frac{8-2a}{3}\)
rồi lập hệ và giải
giải phương trình vô tỉ sau
\(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{2x-1}}=\frac{4.\sqrt{10}}{5}\)
đề sai rùi đe dung như này vì mk đã làm rồi
\(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}\)\(+\frac{1}{\sqrt{1-2x}}=\frac{4\sqrt{10}}{5}\)
dk \(-\frac{1}{2}< x< \frac{1}{2}\)
ap dung bdt \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)
\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}\)
tiep tuc ap dung bdt \(a+b< =2\sqrt{a^2+b^2}\)
\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}>=\frac{4}{\sqrt{2\left(2x+1+1-2x\right)}}=2\)
lai co \(\frac{-1}{2}< x< \frac{1}{2}\Rightarrow\frac{1}{\sqrt{x+1}}>\frac{1}{\sqrt{\frac{1}{2}+1}}=\frac{\sqrt{6}}{3}\)
suy ra \(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>2+\frac{\sqrt{6}}{3}>\frac{4\sqrt{10}}{5}\)
pt vo no