Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 3 2022 lúc 18:47

\(\Leftrightarrow\sqrt{14x+7}-7-\left(\sqrt{2x+3}-3\right)=\sqrt{5x+1}-4\)

\(\Leftrightarrow\dfrac{14x+7-49}{\sqrt{14x+7}+7}-\dfrac{2x+3-9}{\sqrt{2x+3}+3}=\dfrac{5x+1-16}{\sqrt{5x+1}+4}\)

\(\Leftrightarrow\dfrac{14x-42}{\sqrt{14x+7}+7}-\dfrac{2x-6}{\sqrt{2x+3}+3}=\dfrac{5x-15}{\sqrt{5x+1}+4}\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{14}{\sqrt{14x+7}}-\dfrac{2}{\sqrt{2x+3}+3}-\dfrac{5}{\sqrt{5x+1}+4}\right)=0\Leftrightarrow x=3\)

dtkctt
Xem chi tiết
le nhat phuong
20 tháng 8 2017 lúc 15:29

Căn bậc 3 

Phương trình vô tỉ

Khóc lắm bạn ơi *_*

Nguyễn Quốc Gia Huy
20 tháng 8 2017 lúc 17:33

ĐKXĐ: \(x\ge\frac{-1}{2}\)

\(\sqrt{2x+1}+\sqrt[3]{3x-4}=5\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(\sqrt[3]{3x-4}-2\right)=0\)

\(\Leftrightarrow\frac{2x+1-9}{\sqrt{2x+1}+3}+\frac{3x-4-8}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}=0\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{3\left(x-4\right)}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}\)\(\Leftrightarrow\left(x-4\right)\left[\frac{2}{\sqrt{2x+1}+3}+\frac{3}{\sqrt[3]{\left(3x-4\right)^2}+2\sqrt[3]{3x-4}+4}\right]=0\Leftrightarrow x-4=0\)

Nguyễn Quốc Gia Huy
20 tháng 8 2017 lúc 17:34

\(\Leftrightarrow x=4\)

Quỳnh Anh Hà
Xem chi tiết
Nguyễn Trần Thanh Ngọc
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thiều Công Thành
14 tháng 8 2017 lúc 21:18

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

Lầy Văn Lội
14 tháng 8 2017 lúc 22:41

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

tth_new
10 tháng 12 2019 lúc 9:25

Chi tiết một chút!

Bài 2:

ĐKXĐ:....

Đặt \(\sqrt{2x^2-6x+2}=t\ge0\Rightarrow2x^2-6x+2=t^2\)

Viết lại pt dưới dạng:

\(t^2+\left(x-1\right)t-6x^2+17x-12=0\)

\(\Leftrightarrow\left(t-2x+3\right)\left(t+3x-4\right)=0\)

Khách vãng lai đã xóa
Trúc Giang
Xem chi tiết
Kiêm Hùng
1 tháng 7 2021 lúc 18:12

\(pt\Rightarrow\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2-x\\ \Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=\left(2-x\right)^2\\ \Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}=\left(x-2\right)^2\\ \Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=x-2\left(1\right)\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2-x\left(2\right)\end{matrix}\right.\)

Tới đây giải \(pt\left(1\right)\left(2\right)\), sau đó thế lại vào cái pt ban đầu, từ đó nhận hoặc loại nghiệm tìm được

( Không giải được 2 cái kia thì cmt nhắc nha )

 

Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 18:12

ĐKXĐ: \(x\ge-\dfrac{1}{4}\)

Ta có: \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)

\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}}=2\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)

\(\Leftrightarrow x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}=2\)

\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}=-\dfrac{5}{2}\left(loại\right)\\\sqrt{x+\dfrac{1}{4}}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{9}{4}\)

hay x=2(thỏa ĐK)

Vậy: x=2

Chans
1 tháng 7 2021 lúc 18:13

oho

Trà Nhật Đông
Xem chi tiết
Thắng Nguyễn
17 tháng 6 2017 lúc 12:21

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+x^2+2x+1=0\)

\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

Dễ thấy: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1>0\)

Nên (x+1)2=0 =>x+1=0 =>x=-1

Taylor Swift
17 tháng 6 2017 lúc 11:08

đề đâu

Trà Nhật Đông
17 tháng 6 2017 lúc 11:21

cái đề bị gì vậy trời

Trần Nguyễn Khánh Linh
Xem chi tiết
vũ tiền châu
14 tháng 8 2017 lúc 20:51

sai đề rồi phải là 4x^2 chứ sao nó nhảy hẳn lên thế kia

Trần Nguyễn Khánh Linh
14 tháng 8 2017 lúc 20:52

ko biết chắc là lỗi đánh máy

vũ tiền châu
15 tháng 8 2017 lúc 21:13

câu 178 )

cậu đặt cái căn bậc 4 là a và b , cậu trừ đi để nó hết x nhé, , rồi lập hệ phương trình

câu)179

cậu đặt \(\sqrt[3]{3x-2}=a,\sqrt{6-5x}=b\)

  thì ta có \(5a^3+3b^2=8,b=\frac{8-2a}{3}\)

rồi lập hệ và giải

vũ tiền châu
Xem chi tiết
Tuyển Trần Thị
3 tháng 9 2017 lúc 8:24

đề sai rùi đe dung như này vì mk đã làm rồi

\(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}\)\(+\frac{1}{\sqrt{1-2x}}=\frac{4\sqrt{10}}{5}\)

dk \(-\frac{1}{2}< x< \frac{1}{2}\)

ap dung bdt \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)

\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}\)

tiep tuc ap dung bdt \(a+b< =2\sqrt{a^2+b^2}\) 

\(\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>=\frac{4}{\sqrt{2x+1}+\sqrt{1-2x}}>=\frac{4}{\sqrt{2\left(2x+1+1-2x\right)}}=2\)

lai co \(\frac{-1}{2}< x< \frac{1}{2}\Rightarrow\frac{1}{\sqrt{x+1}}>\frac{1}{\sqrt{\frac{1}{2}+1}}=\frac{\sqrt{6}}{3}\)

suy ra \(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{2x+1}}+\frac{1}{\sqrt{1-2x}}>2+\frac{\sqrt{6}}{3}>\frac{4\sqrt{10}}{5}\)

pt vo no