Rút gọn:
3(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
CẦN GẤP!!!!!
Rút gọn biểu thức
3(22+1)(24+1)(28+1)(216+1)
Cảm ơn mn nhiều
\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Đặt : \(P=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
3(22+1)(24+1)(28+1)(216+1
=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=\(\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=\(\left(2^{16}-1\right)\left(2^{16}+1\right)\)
=\(2^{32}-1\)
(a) (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) = 232 − 1
a) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
1,rút gọn biểu thức: (2+1)(22+1)(24+1)(28+1)(216+1)
2,tìm x, biết: x2-6x=-9
1,
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy \(A=2^{32}-1\)
2, \(x^2-6x=-9\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(x-3=0\)
\(x=3\)
Vậy \(x=3\)
bài 5 : rút gọn các biểu thức sau:
A=1002-992+982-972+....+22-12
B=3(22+1)(24+1)(28+1)....(264+1)+1
C=(a+b+c)2+(a+b-c)2-2(a+b)2
So sánh M = 2 32 và N = ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 )
A. M > N
B. M < N
C. M = N
D. M = N – 1
Ta có
N = ( 2 + 1 ) ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) ( 2 16 + 1 ) = 3 ( 2 2 + 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = [ ( 2 2 – 1 ) ( 2 2 + 1 ) ] ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 4 – 1 ) ( 2 4 + 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 8 – 1 ) ( 2 8 + 1 ) ( 2 16 + 1 ) = ( 2 16 - 1 ) ( 2 16 + 1 ) = 2 16 2 − 1 = 2 32 − 1 M à 2 32 − 1 > 2 32 ⇒ N < M
Đáp án cần chọn là: A
So sánh các cặp số sau:
A= ( 2+1).(22+1).(24+1).(28+1).(216+1) với B= 232
`A=(2-1)(2+1)(2^2+1)...(2^16+1)`
`=(2^2-1)(2^2+1)....(2^16+1)`
`=(2^4-1)....(2^16+1)`
`=2^32-1<2^32`
`=>A<B`
Bài 3: Rút gọn biểu thức:
a) (6x+1)2+(6x-1)2-2(1+6x)(6x-1); b) 3(22+1)(24+1)(28+1)(216+1); c) x(2x2-3)-x2(5x+1)+x2; d) 3x(x-2)-5x(1-x)-8(x2-3)
1. Rút gọn các biểu thức sau:
A = 1002- 992 + 982 - 972 + ... + 22 - 12
B = 3(22+ 1) (24 + 1) ... (264 + 1) + 1
C = (a + b + c)2+ (a + b - c)2 - 2(a + b)2
So sánh:
a) A=2005.2007 B=20062
b)(2+1)(22+1)(24+1)(28+1)(216+1) B=232
c)(3+1)(32+1)(34+1)(38+1)(316+1) B=332-1