Cho hình thang ABCD (AB // CD).
Chứng minh rằng: AC2+BD2=AD2+BC2+2AB.CD
.
Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi A C 2 + B D 2 = A D 2 + B C 2
Giả sử AB ⊥ CD ta phải chứng minh:
Thật vậy, kẻ BE ⊥ CD tại E, do AB⊥CD ta suy ra CD ⊥ (ABE) nên CD ⊥ AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:
Nếu A C 2 − A D 2 = B C 2 − B D 2 = k 2 thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho
Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD ⊥ AB.
Nếu A C 2 − A D 2 = B C 2 − B D 2 = - k 2 thì ta có và đưa về trường hợp xét như trên A C 2 − A D 2 = B C 2 − B D 2 = - k 2 .
Chú ý. Từ kết quả của bài toán trên ta suy ra:
Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi A B 2 + C D 2 = A C 2 + B C 2 .
Cho hình thang ABCD (AB song song DC), chân các đường vuông góc kẻ từ A, B xg DC nằm trên cạnh DC. C/m rg: AC2 + BD2 = AD2 + BC2 + 2AB.DC.
Cho tứ diện ABCD có trọng tâm G. Chứng minh AB2 + AC2 + AD2 + BC2 + BD2 + CD2 = 4(GA2 + GB2 + GC2 + GD2)
Cho tam giác cân ABC (AB = AC), đường cao CD (D ở giữa A và B).
Chứng minh rằng: AB2 + BC2 + AC2 = BD2 + 2AD2 + 3DC2
Cho hình thang ABCD(AB//CD) có góc ACD=góc BDC.Chứng minh BD2-BC2=AB.CD.
Cho hình thang ABCD(AB//CD) có góc ACD=góc BDC.Chứng minh BD2-BC2=AB.CD
Kẻ 2 đường cao AE, BF
Gọi G là giao điểm 2 đường chéo
\(\widehat{ACD}=\widehat{BDC}\Rightarrow\Delta GCD\) cân tại G \(\Rightarrow GC=GD\) (1)
\(\left\{{}\begin{matrix}\widehat{ACD}=\widehat{BAC}\left(slt\right)\\\widehat{BDC}=\widehat{ABD}\left(slt\right)\\\widehat{ACD}=\widehat{BDC}\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BAC}=\widehat{ABD}\) \(\Rightarrow\Delta GAB\) cân tại G \(\Rightarrow GA=GB\) (2)
(1); (2) \(\Rightarrow AC=BD\Rightarrow ABCD\) là hình thang cân
\(\Rightarrow\left\{{}\begin{matrix}AB=EF\\DE=CF\end{matrix}\right.\)
Áp dụng định lý Pitago: \(\left\{{}\begin{matrix}BD^2=DF^2+BF^2\\BC^2=BF^2+CF^2\end{matrix}\right.\)
\(\Rightarrow BD^2-BC^2=DF^2-CF^2=\left(DF+CF\right)\left(DF-CF\right)=CD.EF=CD.AB\) (đpcm)
Cho 4 điểm A, B, C, D thỏa mãn hệ thức AC2 + BD2 = AD2 + BC2. Tìm mệnh đề đúng?
A. AC và AD vuông góc với nhau
B. AC và BD vuông góc với nhau
C. AB và CD vuông góc với nhau
D. AB và BC vuông góc với nhau
Chọn C
Theo đầu bài ta có: AC2 + BD2 = AD2 + BC2 nên AC2 - AD2 = BC2 - BD2
Suy ra:
Hay
Tương đương
Hôm nay 20/11 nma e vẫn phải làm bài tập:((, mn giúp em với hic
Cho hình bình hành ABCD. Chứng minh rầng: AC2 +BD2=2(AB2+AD2)
Cho hình bình hành ABCD. CM: AB2 + BC2 + CD2 +DA2 = AC2 +BD2
Ta có: \(AC^2+BD^2=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)^2+\left(\overrightarrow{BC}+\overrightarrow{BA}\right)^2\)
\(=AB^2+AD^2+2\overrightarrow{AB}.\overrightarrow{AD}+BC^2+BA^2+2\overrightarrow{BA}.\overrightarrow{BC}\)
\(=AB^2+AD^2+BC^2+AD^2+2\overrightarrow{AB}\left(\overrightarrow{AD}-\overrightarrow{BC}\right)\)
\(=AB^2+AD^2+BC^2+AD^2\)