Cho tứ diện ABCD, lấy M , N là hai điểm lần lượt thuộc AB và AC (sao cho MN không song song BC ). H là một điểm tùy ý thuộc miền trong ∆BCD . Tìm:
a. BC ∩ (ADH) b. MN ∩ (BCD) c. MN ∩(ADH) d. AH ∩ (DMN).
Chứng minh rằng với mọi số nguyên dương \(n\ge2\) ta có:
\(2< \left(1+\dfrac{1}{n}\right)^n< 3\)
Chứng minh: Cn+1n+4 = Cnn+3 + Cn+1n+3
Chứng minh rằng:
\(C^0_{2n}+C^1_{2n}+C^2_{2n}+...+C^{2n}_{2n}=4^n\)
Cho p là một số nguyên tố và k là số nguyên sao cho : \(1\le k\le p-1\)
Chứng minh rằng : \(C^k_p⋮p\)
Chứng minh rằng :
a) \(11^{10}-1\) chia hết cho 100
b) \(101^{100}-1\) chia hết cho 10 000
c) \(\sqrt{10}\left[\left(1+\sqrt{10}\right)^{100}-\left(1-\sqrt{10}\right)^{100}\right]\) là một số nguyên
Chứng minh: \(\left(C^0_n\right)^2+\left(C^1_n\right)^2+...+\left(C^n_n\right)^2=C^n_{2n}\)
chứng minh rằng
\(C^0_{2n}+2^2C^2_{2n}+...+2^{2n}C^n_{2n}=\frac{3^{2n}+1}{2}\)
Chứng minh:
\(\left(C_{2020}^1\right)^2+\left(2C_{2020}^2\right)^2+\left(3C^3_{2020}\right)^2+...+\left(2020C_{2020}^{2020}\right)^2=2020^2C_{4038}^{2019}\)