cho khai triển \(\left(\dfrac{x^2+2x+2}{x+1}\right)^{2020}=a_0+a_1x+a_2x^2+...+a_{2020}x^{2020}+\dfrac{b_1}{x+1}+\dfrac{b_2}{\left(x+1\right)^2}+...+\dfrac{b_{2020}}{\left(x+1\right)^{2020}}\) tính tổng \(S=b_1+b_2+...+b_{2020}\)
Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\)
( với x khác 0) biết: \(C^6_n+3C^7_n+3C^8_n+C^9_n=2C_{n+2}^8\)
Chứng minh: \(\left(C^0_n\right)^2+\left(C^1_n\right)^2+...+\left(C^n_n\right)^2=C^n_{2n}\)
Tính F = \(2.1.C_{2021}^2+3.2.C_{2021}^3+...+k\left(k-1\right)C_{2021}^k+...+2021.2020.C_{2021}^{2021}\)
\(B=C_{90}^0+2C_{90}^1+2^2C^2_{90}+....+2^{89}C_{90}^{89}+2^{90}C_{90}^{90}\) Tính B
a: hệ số của số hạng chứa x9 trong kt \(\left(x^3-3x^2+2\right)^n\) biết\(\frac{A^{4_n}}{A^{3_{n+1}}-C_n^{n-4}}=\frac{24}{23}\)
b: hệ số của số hạng chứa x3 trong kt f(x)=\(\left(1+2x\right)^3+\left(1+2x\right)^4+...+\left(1+2x\right)^{22}\)
tìm hệ số của số hạng chứa x^10 trong kt:
\(\left(1+x\right)^{10}\left(x+1\right)^{10}\)
từ đó suy ra \(S=\left(C^0_{10}\right)^2+\left(C^1_{10}\right)^2+...+\left(C^{10}_{10}\right)^2\)
Khai triển: \(\left(1+x+x^2+...+x^{10}\right)^{11}=a_0+a_1x+a_2x^2+...+a_{110}x^{110}\). Tính: \(S=C^0_{11}a_0-C_{11}^1a_1+C_{11}^2a_2-C_{11}^3a_3+...+C^{10}_{11}a_{10}-C^{11}_{11}a_{11}\)
Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\) ( với x khác 0) biết:
\(2A^2_n=C^2_{n-1}+C^3_{n-1}\)