Cho hình thang cân ABCD có AB//CD và AB<DC, đường chéo BD vuông góc với cạnh bên BC. vẽ đường cao BH, AK
a, chứng minh ΔBDC đồng dạng với ΔHBC
b, chứng minh BC2 = HC.DC
c, chứng minh ΔAKD đồng dạng với ΔBHC
d, cho BC=15cm, DC=25cm. tính HC, HD
e, tính diện tích hình thang ABCD
cho hình thang cân ABCD có AB song song DC và AB<DC, đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao BH.
a) Chứng minh: △BDC ∞ △ HBC
b) cho BC = 15 cm; DC=25cm; Tính HC và HD
c) tính diện tích hình thang ABCD
Cho ABCD là hình thang có đáy lớn CD. Qua A kẻ đường thẳng song song BC cắt BD tại M cắt CD tại I. Qua B kẻ đường thẳng song song AD cắt CD ở K. Qua K kẻ đường thẳng song song BD cắt BC ở Q.
a,C/m ABCI là hình bình hành
b, C/m AB=DK
c, C/m DI=CK
d, C/m MQ//DC
Cho hình thang ABCD có đáy lớn CD. Qua A vẽ đường thẳng song song với BC cắt DC tại K. Qua B vẽ đường thẳng song song với AD cắt DC tại I..BI cắt AC tại F, AK cắt BD tại E. Chứng minh rằng:
a)Tam giác AFB đồng dạng với tam giác CFI
b) AE. KD = AB. EK
c) AB2 = CD. EF
Giúp e ý c với
cho hình thang ABCD (AB song song với CD) đường thẳng đi qua A song song với BC cắt BD ở I, đường thẳng qua B song song AD cắt AC ở K. a) Chứng minh IK song song với DC b) AB^2=IK.DC
Cho hình thang vuông ABDC( góc A bằng 90 độ, AB//DC) có AB=2cm, AD=3cm, DC=5cm. Gọi giao điểm của AD và CB là E. Gọi O là giao điểm của hai đường chéo hình thang ABCD và A là đường thẳng qua O song song với AB cắt AD, BC lần lượt tại M, N. C/m OM=ON
cho hình thang cân ABCD có AB//CD và AB<CD, đường chéo BD vuông góc với cạnh BC. vẽ đường cao AH
a) CM tam giác BDC đồng dạng với tam giác HBC
b) Cho BC=15cm, DC=25cm. tính HC,HD
c) tính S abcd
cho hình thang cân abcd có ab//dc và ab<dc, đường chéo bd vuông góc với cạch bên bc. vẽ đường cao bh,ak
a, cm tam giác bdc đồng dạng tam giác hbc
b, cm bc^2=hc.dc
c,cm tam giác akd đồng dạng tam giác bhc
d, cho bc=15cm. dc=25cm. tính hc,hd
e, tính diện tích hình thang abcd
Cho ΔABC vuông tại B (AB<AC), đường cao BH.
a) Cm: ΔABC∼ΔAHB và AB2 = AH.AC
b)Vẽ AD là tia phân giác trong \(\widehat{BAC}\) (D thuộc BC) cắt BH tại M
Cm: \(\dfrac{AM}{AD}=\dfrac{DB}{DC}\)
c) Kẻ CI vuông góc với AD tại I. Chứng minh: AD2 = AB.AC-BD.CD