Cho \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+}\right)=3\)
Tính E = x+y
Cho \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
Tính E = x + y
Ta có: \(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\)
\(\left(y+\sqrt{y^2+3}\right)\left(\sqrt{y^2+3}-y\right)=3\)
Kết hợp với giả thiết ta có:
\(\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)
\(\sqrt{y^2+3}-y=x+\sqrt{x^2+3}\)
Cộng theo vế ta được: \(-\left(x+y\right)=x+y\)
\(\Rightarrow\)\(E=x+y=0\)
\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
\(\Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)
\(\Leftrightarrow\left(x^2-x^2-3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)
\(\Leftrightarrow-3\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+3}=x-\sqrt{x^2+3}\)(*)
Tương tự, nhân mỗi vế vs \(y-\sqrt{y^2+3}\), ta được:
\(-x-\sqrt{x^2+3}=y-\sqrt{y^2+3}\)(**)
Cộng (*) và (**) suy ra :
\(-y-x-\sqrt{y^2+3}-\sqrt{x^2+3}=x+y-\sqrt{x^2+3}-\sqrt{y^2+3}\)
\(\Leftrightarrow-y-x=x+y\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)
Vậy \(E=0.\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x
\(\left(x+\sqrt{x^2+3}\right).\left(y+\sqrt{y^2+3}\right)=3\).Tính E=x+y
Từ \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
\(\Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\left(\sqrt{x^2+3}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
Tương tự \(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)
Cộng theo vế ta có: \(2\left(x+y\right)=0\)
\(\Leftrightarrow E=0\)
\(\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2-3}\right)\)
\(\Leftrightarrow\left(x^2-x^2+3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+3}=x-\sqrt{x^2+3}\) (1)
Tương tự \(x+\sqrt{x^2+3}=y-\sqrt{y^2+3}\) (2)
Từ (1) và (2)\(\Rightarrow x+y=0\)
\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)(1)
Vì \(\sqrt{x^2+3}\ge\sqrt{x^2}=\left|x\right|\)
\(\Rightarrow\sqrt{x^2+3}-x\ge0\)
Nhân cả 2 vế của (1) với \(\sqrt{x^2+3}-x\)ta được:
\(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)\left(y+\sqrt{y^2+3}\right)=3\left(\sqrt{x^2+3}-x\right)\)
\(\Leftrightarrow\left(x^2+3-x^2\right)\left(y+\sqrt{y^2+3}\right)=3\left(\sqrt{x^2+3}-x\right)\)
\(\Leftrightarrow3\left(y+\sqrt{y^2+3}\right)=3\left(\sqrt{x^2+3}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\)(2)
Tương tự ta có: \(\sqrt{y^2+3}-y\ge0\)
Nhân cả 2 vế của (1) với \(\sqrt{y^2+3}-y\)ta được:
\(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)
\(\Rightarrow x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\)(3)
Cộng (2) với (3) ta được: \(2\left(x+y\right)=0\)\(\Leftrightarrow x+y=0\)
\(\Rightarrow E=x+y=0\)
Rút gọn
a.\(\left(2\sqrt{x}+\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)\)
b. \(\left(\sqrt{3x}+\sqrt{2x}\right)\left(3\sqrt{x}-\sqrt{6x}\right)\)
c.\(\left(\frac{4}{3}\sqrt{3}+\sqrt{2}\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{3}}\right)-2\)
d.\(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)(x,y lớn hơn hoặc bằng 0)
e.\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+\sqrt{y}\right)\) (x,y lớn hơn hoặc bằng 0)
Biết \(0< x\le y\)và \(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(x+2y\right)}\right)+\left(\frac{y}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}\right)=\frac{5}{3}\)
Tính \(\frac{x}{y}\)
Cho x,y là các số thực dương thỏa mãn đồng thời các điều kiên:
1) \(\left(x+2\right)\left(y+2\right)=3\left(x^2+y^2+\sqrt{xy}\right)\)
2) \(\left(\sqrt{x}+\sqrt{y}\right)^3=4\left(x^3+y^3\right)\)
CMR: \(\sqrt{x}+\sqrt{y}=2\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222