Hãy tìm các tập hợp:
a) Q \(\cap\) I
b) R \(\cap\) I
Hãy tìm các tập hợp :
a) \(\mathbb{Q}\cap\text{I}\)
b) \(\mathbb{R}\cap\text{I}\)
a) Q \(\cap\) I = \(\varnothing\)
b) R \(\cap\) I = I
a) Q \(\cap\) I = ∅
b) R \(\cap\) I = I
Cho hai tập hợp:
A={x\(\in\)R|x>2}, B={x\(\in\)R|-1<x\(\le\)5}. Tìm A\(\cup\)B, A\(\cap\)B, A\B, B\A
\(A\cup B=\left(-1;+\infty\right)\)
\(A\cap B=(2;5]\)
Xác định các tập hợp sau:
a, I \(\cap\) R
b, I \(\cap\) Q
c, Z \(\cap\) Q
d, I \(\cap\) Z
Bài 1:Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B⊂X⊂A.
Bài 2:Cho các tập hợp: A={1;2;3;4;5}, B={2;4;6}, C={1;3;5}. Thực hiện các phép toán sau:
a)A\(\cup\)B; A\(\cap\)B; B\(\cap\)C
b)(A\(\cup\)B)\(\cap\)C; (A\(\cap\)B)\(\cup\)C
Bài 3: Tìm giao các tập hợp sau:
\(a,\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)\\ b,\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)\\ c,\left(0;12\right)\cap[5;+\infty)\\ d,R\cap[-1;1)\)
\(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
\(\left(-\dfrac{11}{2};7\right)\cap\left(-2;\dfrac{27}{2}\right)=\left(-2;7\right)\)
\(\left(0;12\right)\cap[5;+\infty)=[5;12)\)
\(R\cap\left[-1;1\right]=\left[-1;1\right]\)
Cho các tập hợp A= {x ∈ R\(|\)-3<x<3}; B= {x ∈ R\(|\)-1 ≤ x ≤ 5}; C = {x ∈ R\(|\)Ixl ≥ 2}. Xác định các tập hợp A\(\cap\)B\(\cap\)C
A. [2;3)
B. (2;3)
C. [-1;3)
D. R
Bài 1: Cho các tập hợp: A={1;2;3}, B={2;3;6;7}, C={3;4;5;8}
a)Tìm A\(\cap\)B, A\(\cup\)B, A\B, B\A
b)Chứng minh A\(\cap\)(B\C)=(A\(\cap\)B)\(A\(\cap\)C)
Bài 2: Cho A là một tập hợp tùy ý. Xác định các tập hợp sau:
a)A\(\cap\)A; A\(\cup\)A; A\(\cap\)\(\varnothing\); A\(\cup\)\(\varnothing\)
b)A\A; A\\(\varnothing\); \(\varnothing\)\A
Cho tập hợp
A={x∈Z/-5<x<8}
B={x∈Z/2<số đối của x≤5}
C={x∈Z/số đối của x≥6}
Hãy tìm tập hợp A\(\cap\)B;B\(\cap\)C;C\(\cap\)A
Lời giải:
Theo đề thì: \(B\subset A\) nên \(A\cap B = B [-2;1)\)