tìm x,y thỏa mãn x^2+2^y=11
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
11. Tìm các số tự nhiên x;y thỏa mãn 3^x -2^y = 1
Lời giải:
Nếu $y=0$ thì $3^x=2^y+1=2$ (vô lý)
Nếu $y=1$ thì $3^x=2^y+1=3\Rightarrow x=1$
Nếu $y\geq 2$ thì $3^x=2^y+1\equiv 1\pmod 4$
Mà $3^x\equiv (-1)^x\pmod 4$
$\Rightarrow (-1)^x\equiv 1\pmod 4$
$\Rightarrow x$ chẵn. Đặt $x=2k$ thì:
$2^y=3^x-1=3^{2k}-1=(3^k-1)(3^k+1)$
$\Rightarrow$ tồn tại $n>m >0$ tự nhiên sao cho $3^k-1=2^m; 3^k+1=2^n$ với $m+n=y$
$\Rightarrow 2^n-2^m=2$.
$\Rightarrow 2^{n-1}-2^{m-1}=1$
$\Rightarrow 2^{m-1}$ lẻ
$\Rightarrow m=1\Rightarrow n=2$
$\Rightarrow y=m+n=3$
$3^x=1+2^y=1+2^3=9\Rightarrow x=2$
Vậy $(x,y)=(2,3), (1,1)$
tìm x , y thuộc Z thỏa mãn:
\(x^2+2^y=11\)
tìm x,y nguyên dương thỏa mãn
\(\frac{x+y}{x^2+y^2}=\frac{11}{65}\)
1 , Tìm x,y nguyên thỏa mãn : x^2 - 2*(y^2)=1
2 , Tìm x,y nguyên thỏa mãn : x^2 - 2*(y^2)=5
Bài 1.
a) Tìm x, y nguyên thỏa mãn: (x + y + 1) ^ 3 = 7 + x ^ 3 + y ^ 3
b) Tìm x, y nguyên dương thỏa mãn: y ^ 2 + 2xy - 8x ^ 2 - 5x = 2
a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
| 6y-12x-5 | 1 | 47 | -1 | -47 |
| 24x+6y+5 | 47 | 1 | -47 | -1 |
| x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
| y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)
=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)
\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)
\(=y^2+6y+9-88=\left(y+3\right)^2-88\)
Để phương trình có nghiệm nguyên thì Δ phải là số chính phương
=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)
=>\(\left(y+3\right)^2-k^2=88\)
=>(y+3-k)(y+3+k)=88
=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}
TH1: y+3-k=1 và y+3+k=88
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH2: y+3-k=88 và y+3+k=1
=>y+3-k+y+3+k=1+88
=>2y+6=89
=>2y=83
=>y=41,5(loại)
TH3: y+3-k=-1 và y+3+k=-88
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH4: y+3-k=-88 và y+3+k=-1
=>=>y+3-k+y+3+k=-1-88
=>2y+6=-89
=>2y=-95
=>y=-47,5(loại)
TH5: y+3-k=2 và y+3+k=44
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH6: y+3-k=44 và y+3+k=2
=>y+3-k+y+3+k=2+44
=>2y+6=46
=>2y=40
=>y=20(nhận)
\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)
=>\(2x^2+57x+351=0\)
=>\(\left(2x+39\right)\left(x+9\right)=0\)
=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)
TH7: y+3-k=-2 và y+3+k=-44
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH8: y+3-k=-44 và y+3+k=-2
=>y+3-k+y+3+k=-2-44
=>2y+6=-46
=>2y=-52
=>y=-26
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)
=>\(2x^2-81x+765=0\)
=>(x-15)(2x-51)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)
TH9: y+3-k=4 và y+3+k=22
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH10: y+3-k=22 và y+3+k=4
=>y+3-k+y+3+k=4+22
=>2y+6=26
=>2y=20
=>y=10
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)
=>\(2x^2+27x+81=0\)
=>\(2x^2+18x+9x+81=0\)
=>(x+9)(2x+9)=0
=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)
TH11: y+3-k=-4 và y+3+k=-22
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH12: y+3-k=-22 và y+3+k=-4
=>y+3-k+y+3+k=-4-22
=>2y+6=-26
=>2y=-32
=>y=-16
Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)
=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)
=>\(2x^2-51x+315=0\)
=>\(2x^2-30x-21x+315=0\)
=>(x-15)(2x-21)=0
=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)
TH13: y+3-k=8 và y+3+k=11
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH14: y+3-k=11 và y+3+k=8
=>y+3-k+y+3+k=8+11
=>2y+6=19
=>2y=13
=>y=6,5(loại)
TH15: y+3-k=-8 và y+3+k=-11
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
TH16: y+3-k=-11 và y+3+k=-8
=>y+3-k+y+3+k=-8-11
=>2y+6=-19
=>2y=-25
=>y=-12,5(loại)
Cho ba số x, y,z thỏa mãn x+2/2=y+3/3=z+4/4 và 2x+y+z=11 .Tìm x^2+y^2+z^2=..................
Xin vui lòng cho cách giải cụ thể !!
Ta co x+2/2=y+3/3=z+4/4 hay x+1=y+1=z+1 => x=y=z
Suy ra: 2x+y+z=11 hay 2x+x+x=11 => 4x=11 => x=11/4
Vay: x^2+y^2+z^2 = (11/4)^2+(11/4)^2+(11/4)^2 =121/16 . 3 = 363/16