Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Song tử
Xem chi tiết
Minhchau Trần
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 23:39

Lời giải:

Nếu $y=0$ thì $3^x=2^y+1=2$ (vô lý)

Nếu $y=1$ thì $3^x=2^y+1=3\Rightarrow x=1$ 

Nếu $y\geq 2$ thì $3^x=2^y+1\equiv 1\pmod 4$

Mà $3^x\equiv (-1)^x\pmod 4$

$\Rightarrow (-1)^x\equiv 1\pmod 4$

$\Rightarrow x$ chẵn. Đặt $x=2k$ thì:

$2^y=3^x-1=3^{2k}-1=(3^k-1)(3^k+1)$

$\Rightarrow$ tồn tại $n>m >0$ tự nhiên sao cho $3^k-1=2^m; 3^k+1=2^n$ với $m+n=y$

$\Rightarrow 2^n-2^m=2$. 

$\Rightarrow 2^{n-1}-2^{m-1}=1$

$\Rightarrow 2^{m-1}$ lẻ 

$\Rightarrow m=1\Rightarrow n=2$

$\Rightarrow y=m+n=3$

$3^x=1+2^y=1+2^3=9\Rightarrow x=2$

Vậy $(x,y)=(2,3), (1,1)$

 

Huynh nhu thanh thu
Xem chi tiết
Alone
12 tháng 8 2016 lúc 14:25

x=3;-3 y=1

Nguyễn Thùy Trang
Xem chi tiết
pham thuy linh
Xem chi tiết
Trần Quang Sáng
Xem chi tiết
Yen Phuoq
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:16

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

Trần Tuấn Hoàng
9 tháng 2 2023 lúc 14:28

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

Hacker lỏd
Xem chi tiết

Ta có: \(2x^2+y^2+3xy-3x-3y+11=0\)

=>\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

\(\Delta=\left(3y-3\right)^2-4\cdot2\cdot\left(y^2-3y+11\right)\)

\(=9y^2-18y+9-8y^2+24y-88=y^2+6y-79\)

\(=y^2+6y+9-88=\left(y+3\right)^2-88\)

Để phương trình có nghiệm nguyên thì Δ phải là số chính phương

=>\(\left(y+3\right)^2-88=k^2\left(k\in Z\right)\)

=>\(\left(y+3\right)^2-k^2=88\)

=>(y+3-k)(y+3+k)=88

=>(y+3-k;y+3+k)∈{(1;88);(88;1);(-1;-88);(-88;-1);(2;44);(44;2);(-2;-44);(-44;-2);(4;22);(-4;-22);(22;4);(-22;-4);(8;11);(-8;-11);(11;8);(-11;-8)}

TH1: y+3-k=1 và y+3+k=88

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH2: y+3-k=88 và y+3+k=1

=>y+3-k+y+3+k=1+88

=>2y+6=89

=>2y=83

=>y=41,5(loại)

TH3: y+3-k=-1 và y+3+k=-88

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH4: y+3-k=-88 và y+3+k=-1

=>=>y+3-k+y+3+k=-1-88

=>2y+6=-89

=>2y=-95

=>y=-47,5(loại)

TH5: y+3-k=2 và y+3+k=44

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH6: y+3-k=44 và y+3+k=2

=>y+3-k+y+3+k=2+44

=>2y+6=46

=>2y=40

=>y=20(nhận)

\(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\left(3\cdot20-3\right)+20^2-3\cdot20+11=0\)

=>\(2x^2+57x+351=0\)

=>\(\left(2x+39\right)\left(x+9\right)=0\)

=>\(\left[\begin{array}{l}2x+39=0\\ x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=-39\\ x=-9\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac{39}{2}\left(loại\right)\\ x=-9\left(nhận\right)\end{array}\right.\)

TH7: y+3-k=-2 và y+3+k=-44

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH8: y+3-k=-44 và y+3+k=-2

=>y+3-k+y+3+k=-2-44

=>2y+6=-46

=>2y=-52

=>y=-26

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x^2+x\cdot\left\lbrack3\cdot\left(-26\right)-3\right\rbrack+\left(-26\right)^2-3\cdot\left(-26\right)+11=0\)

=>\(2x^2-81x+765=0\)

=>(x-15)(2x-51)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-51=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{51}{2}\left(loại\right)\end{array}\right.\)

TH9: y+3-k=4 và y+3+k=22

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH10: y+3-k=22 và y+3+k=4

=>y+3-k+y+3+k=4+22

=>2y+6=26

=>2y=20

=>y=10

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\left(3\cdot10-3\right)+10^2-3\cdot10+11=0\)

=>\(2x^2+27x+81=0\)

=>\(2x^2+18x+9x+81=0\)

=>(x+9)(2x+9)=0

=>\(\left[\begin{array}{l}x+9=0\\ 2x+9=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-9\left(nhận\right)\\ x=-\frac92\left(loại\right)\end{array}\right.\)

TH11: y+3-k=-4 và y+3+k=-22

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH12: y+3-k=-22 và y+3+k=-4

=>y+3-k+y+3+k=-4-22

=>2y+6=-26

=>2y=-32

=>y=-16

Ta có: \(2x^2+x\left(3y-3\right)+y^2-3y+11=0\)

=>\(2x_{}^2+x\cdot\left\lbrack3\cdot\left(-16\right)-3\right\rbrack+\left(-16\right)^2-3\cdot\left(-16\right)+11=0\)

=>\(2x^2-51x+315=0\)

=>\(2x^2-30x-21x+315=0\)

=>(x-15)(2x-21)=0

=>\(\left[\begin{array}{l}x-15=0\\ 2x-21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=15\left(nhận\right)\\ x=\frac{21}{2}\left(loại\right)\end{array}\right.\)

TH13: y+3-k=8 và y+3+k=11

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH14: y+3-k=11 và y+3+k=8

=>y+3-k+y+3+k=8+11

=>2y+6=19

=>2y=13

=>y=6,5(loại)

TH15: y+3-k=-8 và y+3+k=-11

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

TH16: y+3-k=-11 và y+3+k=-8

=>y+3-k+y+3+k=-8-11

=>2y+6=-19

=>2y=-25

=>y=-12,5(loại)

Yumi Hanna
Xem chi tiết
buitanquocdat
27 tháng 11 2015 lúc 22:09

Ta co x+2/2=y+3/3=z+4/4  hay  x+1=y+1=z+1  =>  x=y=z

Suy ra:   2x+y+z=11 hay  2x+x+x=11  =>  4x=11  =>  x=11/4

Vay: x^2+y^2+z^2 = (11/4)^2+(11/4)^2+(11/4)^2 =121/16 . 3 = 363/16