Rút gọn: \(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\)
\(\frac{\text{1}}{a^2-5a+6}\)+ \(\frac{\text{1}}{a^2-7a+12}\)+ \(\frac{1}{\text{}\text{a}\text{ }^2-9a+20}\)+ \(\frac{1}{^2-11a+30}\)
Rút gọn biểu thức
Rút gọn biểu thức
A=\(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}........\)
Rút gọn biểu thức:
A= \(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
\(\frac{3}{\left(a-2\right)\left(a-3\right)}\). minh khong chac dau nha. neu sai thi thoi.
theo đề ta có :
A= (1 /a2 - 2a -3a + 6) + ( 1 /a2 -3a -4a + 12 ) + ( 1 /a2 - 4a -5a + 20 )
\(\Leftrightarrow\) A = (1 /( a -2 )(a-3 ))+ (1/(a-3)(a-4))+(1/(a-4)(a-5)).
\(\Leftrightarrow\)A = (1/a-2) - (1/ a-3) +(1/ a-3) -(1/ a-4) +(1/ a-4) - (1/ a-5)
\(\Leftrightarrow\)A = (1/a-2) - (1/ a-5)
\(\Leftrightarrow\)A = a-5-a+2 / (a-2)(a-5)
\(\Leftrightarrow\)A= 3 / ( a -2 )(a-5)
chúc bạn học tốt
Cho abc=2
Tính M= \(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
cho biểu thức
A=\(\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)
a) rút gọn A
b)tìm giá trị của a để biểu thức A nhận giá tị lớn hơn \(\frac{5}{6}\)
ĐKXĐ: ...
a/ \(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)
\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+...+\frac{1}{a+4}-\frac{1}{a+5}\)
\(=\frac{1}{a}-\frac{1}{a+5}=\frac{5}{a\left(a+5\right)}\)
\(A>\frac{5}{6}\Rightarrow\frac{5}{a\left(a+5\right)}>\frac{5}{6}\)
\(\Leftrightarrow\frac{1}{a\left(a+5\right)}-\frac{1}{6}>0\Leftrightarrow\frac{6-a^2-5a}{a\left(a+5\right)}>0\)
\(\Leftrightarrow\frac{\left(1-a\right)\left(a+6\right)}{a\left(a+5\right)}>0\Rightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)
a) \(A=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)
\(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)
\(A=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}+\frac{1}{a+3}-\frac{1}{a+4}+\frac{1}{a+4}-\frac{1}{a+5}\)
\(A=\frac{1}{a}-\frac{1}{a+5}=\frac{a+5-a}{a\left(a+5\right)}=\frac{5}{a^2+5a}\)
b) Điều kiện: \(a\ne0;-1;-2;-3;-4;-5\)
\(A>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}-\frac{5}{6}>0\) \(\Leftrightarrow\frac{30-5a^2-25a}{30\left(a^2+5a\right)}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)
Kết luận: ....
Cho biểu thức:
P = \(\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
a. Tìm điều kiện để P xác định
b. Rút gọn P
c. Tính giá trị của P biết a3 - a2 + 2 = 0
\(P=\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
\(=\frac{1}{a.\left(a-1\right)}+\frac{1}{\left(a-1\right).\left(a-2\right)}+\frac{1}{\left(a-2\right).\left(a-3\right)}+\frac{1}{\left(a-3\right).\left(a-4\right)}+\frac{1}{\left(a-4\right).\left(a-5\right)}\)
a) ĐKXĐ: \(a\ne0;1;2;3;4;5;6\)
b) \(P=\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a-2}-\frac{1}{a-1}+\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}\)
\(A=\frac{1}{a-5}-\frac{1}{a}=\frac{a-\left(a-5\right)}{a.\left(a-5\right)}=\frac{5}{a.\left(a-5\right)}\)
c) \(a^3-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2a^2-2a+2a+2=0\)
\(\Leftrightarrow a^2.\left(a+1\right)-2a.\left(a+1\right)+2.\left(a+1\right)=0\)
\(\Leftrightarrow\left(a+1\right).\left(a^2-2a+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1=0\\a^2-2a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\\left(a-1\right)^2=-1\left(loai\right)\end{cases}}}\)
Thay a=-1 vào P
\(P=\frac{5}{a.\left(a-5\right)}=\frac{5}{-1.\left(-1-5\right)}=\frac{5}{6}\)
rút gọn biểu thức sau:
M = 1/ a2 - 5a + 6 + 1 / a2 - 7a + 12 + 1 / a2 - 9a + 20 + 1 / a2 - 11a +30
\(M=\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\)
\(M=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-3\right)\left(a-4\right)}+\frac{1}{\left(a-4\right)\left(a-5\right)}+\frac{1}{\left(a-5\right)\left(a-6\right)}\)
\(M=\frac{1}{a-2}-\frac{1}{a-3}+\frac{1}{a-3}-\frac{1}{a-4}+\frac{1}{a-4}-\frac{1}{a-5}+\frac{1}{a-5}-\frac{1}{a-6}\)
\(M=\frac{1}{a-2}-\frac{1}{a-6}\)
Rút gọn : \(\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
Tìm tập xác định và rút gọn A
Đặt \(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
Ta có:\(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\frac{a}{a+1}-\frac{a^2}{1+a^2}.\frac{1}{a^2+a}\)
\(A=\frac{a^2}{a^2-1}-\frac{a^3}{a+a^3+a^2+1}-\frac{a^2}{a+a^2+a^3+a^4}\)
Rút gọn : \(\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)
a) Tìm tập xác định và rút gọn A
b) Tìm a để A = 3
a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)
\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)
\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)
\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)
b: Để A=3 thì \(3a^2-3=a\)
\(\Leftrightarrow2a^2=3\)
hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)