Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đường Quỳnh Giang
Xem chi tiết
Đỗ Kim Lâm
Xem chi tiết
Đinh Đức Hùng
15 tháng 6 2017 lúc 13:43

\(f\left(x\right)=\frac{2x^2-2x+3}{x^2-x+2}=\frac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\frac{1}{x^2-x+2}=2-\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\)

Ta thấy : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\forall x\)

\(\Leftrightarrow\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\ge\frac{1}{\frac{7}{4}}=\frac{4}{7}\forall x\)

\(\Rightarrow f\left(x\right)=2-\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\ge2-\frac{4}{7}=\frac{10}{7}\forall x\) có GTNN là \(\frac{10}{7}\)

Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(f\left(x\right)_{min}=\frac{10}{7}\) tại \(x=\frac{1}{2}\)

Đỗ Kim Lâm
15 tháng 6 2017 lúc 13:48

Sai rồi bạn!

Đỗ Kim Lâm
15 tháng 6 2017 lúc 13:50

Tớ nói chơi thôi chứ đúng rồi đó.

KuDo Shinichi
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 7 2016 lúc 17:51

Ta có : \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}\) . Đặt \(y=x+2\Rightarrow x=y-2\)

\(\Rightarrow x^2+2x+3=\left(y-2\right)^2+2\left(y-2\right)+3=y^2-2y+3\)

\(\Rightarrow A=\frac{y^2-2y+3}{y^2}=1-\frac{2}{y}+\frac{3}{y^2}\)

Đặt \(\frac{1}{y}=z\Rightarrow A=3z^2-2z+1=3\left(z-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow z=\frac{1}{3}\Leftrightarrow y=3\Leftrightarrow x=1\)

Vậy Min A = \(\frac{2}{3}\Leftrightarrow x=1\)

Hoàng Lê Bảo Ngọc
5 tháng 7 2016 lúc 19:49

Cách 2 : Ta có : \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{x^2+2x+3}{x^2+4x+4}=\frac{3\left(x^2+2x+3\right)}{3\left(x^2+4x+4\right)}=\frac{2\left(x^2+4x+4\right)+\left(x^2-2x+1\right)}{3\left(x^2+4x+4\right)}\)

\(=\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}+\frac{2}{3}\ge\frac{2}{3}\). Dấu đẳng thức xảy ra khi x = 1.

Vậy Min A = 2/3 <=> x = 1

Vũ Ngọc Hải My
Xem chi tiết
Pham Van Hung
10 tháng 12 2018 lúc 11:35

\(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{\left(x^2-2x+1\right)+\left(2x^2+8x+8\right)}{3\left(x+2\right)^2}\)

\(=\frac{\left(x-1\right)^2+2\left(x+2\right)^2}{3\left(x+2\right)^2}=\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}+\frac{2}{3}\ge\frac{2}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy GTNN của A là \(\frac{2}{3}\Leftrightarrow x=1\)

Nguyễn Vũ Thắng
10 tháng 12 2018 lúc 18:03

Thiếu ĐKXĐ \(x\ne-2\)

Bùi Anh Khoa
Xem chi tiết
Hiếu
31 tháng 10 2018 lúc 21:23

Vì \(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left|x^2-\frac{9}{4}\right|\ge0\end{cases}}\)=> \(D\ge3\cdot0+2\cdot0+3,5=3,5\)

Dấu = xảy ra khi       \(x=-\frac{3}{2}\)

Truong_tien_phuong
31 tháng 10 2018 lúc 21:25

Ta có: 

\(D=3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|+3,5\)

Mà: \(\left(2x+3\right)^2\ge0\)          với mọi x 

   \(\left|x^2-\frac{9}{4}\right|\ge0\)   với mọi x

\(\Rightarrow3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|\ge0\)

\(\Rightarrow3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|+3,5\ge3,5\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x+3=0\\x^2-\frac{9}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\pm\frac{3}{2}\end{cases}\Rightarrow}x=\pm\frac{3}{2}}\)

Vậy: GTNN của D bằng 3,5 khi x = \(\pm\)\(\frac{3}{2}\)

Hiếu
31 tháng 10 2018 lúc 21:26

Bạn phuong là sai r, hợp của chúng phải là x=-3/2 mới đúng

Đinh Anh Thư
Xem chi tiết
Nguyễn Thế Sơn
Xem chi tiết
tthnew
3 tháng 11 2019 lúc 8:48

ĐK: \(\left(x-2\right)\left(x^2+1\right)+2x\left(x-2\right)\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\ne0\Leftrightarrow x\ne-1;2\)

Ta có: \(A=\frac{x^2\left(x-2\right)+4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+1\right)}=\frac{x^2+4}{\left(x+1\right)^2}=\frac{t^2-2t+5}{t^2}\left(t=x+1\right)\)

\(=\frac{5}{t^2}-\frac{2}{t}+1=5\left(\frac{1}{t}-\frac{1}{5}\right)^2+\frac{4}{5}\ge\frac{4}{5}\)

Đẳng thức xảy ra khi t = 5 hay x=4

Vậy..

Khách vãng lai đã xóa
Annie Scarlet
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2019 lúc 14:27

Hy vọng bạn học BĐT Cauchy rồi

\(x\ne-1\)

Đặt \(\left(x+1\right)^2=a>0\Rightarrow P=\frac{\left(a+2\right)\left(a+8\right)}{a}=\frac{a^2+10a+16}{a}\)

\(P=a+\frac{16}{a}+10\ge2\sqrt{a.\frac{16}{a}}+10=18\)

\(\Rightarrow P_{min}=18\) khi \(a=4\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Lê Thụy Sĩ
Xem chi tiết
cao van duc
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

HUYNHTRONGTU
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Khách vãng lai đã xóa