Cho hàm số : y = - \(\frac{1}{3}x^3\)+( m+2)x\(^2\) - 4x +8 .
Tìm m để hàm số đồng biến trên đoạn có độ dài =2
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Cho hàm số \(y=-\frac{1}{3}x^3+mx^2+\left(m-2\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) đồng biến trên đoạn có độ dài bằng 4
Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)
Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\) và thỏa mãn :
\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)
\(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)
\(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)
\(\Leftrightarrow m=2\) hoặc \(m=-3\)
Kết luận \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
1) cho hàm số y = (m-2)x+m + 3. ..a) tìm m để hàm số đồng biến trên R. ..b) tìm m để hàm số có tung độ gốc là 5... c) tìm m để may đồ thị sao đồng quy:y=-x+2;y=2 x-1;y=(m-2)x+m+3
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
Cho hàm số y = (m-2)x + m + 3
1. Tìm điều kiện của m để hàm số luôn nghịch biến
2. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3
3. Tìm m để đồ thị hàm số trên và các đồ thị hàm số y= -x+2; y = 2x-1 đồng quy
1. hàm số nghịch biến khi
\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\)
2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)
\(\Rightarrow y=0\)
Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)
3. pt hoành độ giao điểm của
\(y=-x+2,và,y=2x-1\) là
\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)
A(1,1)
3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)
Bài 1: Tìm m để a/ Hàm số y = (- m + 4) x + 5 là hàm số bậc nhất b/ Hàm số y = (2 - m) x - 3 đồng biến trong R Bài 2: Cho hàm số y = 2x có đồ thị (d1); hàm số y=x-1 có đồ thị (d2) . a / Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ. b/ Xác định tọa độ giao điểm A của (d1) và (d2) bằng phép toán. c/ Viết ph / trình đường thẳng (D) song song với (d2) và điểm M(6;3) qua
b: Để hàm số đồng biến thì 2-m>0
hay m<2
Câu 1: cho hàm số y=\(\dfrac{\sqrt{m}+3}{\sqrt{m}-2}x-10\)
a,tìm x để hàm số trên là hàm số bậc nhất
b, tìm m để hàm số trên đồng biến trên R
a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)
b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)
hay m>4
Bài 1: Tìm m để a/ Hàm số y = (- m + 4) x + 5 là hàm số bậc nhất b/ Hàm số y = (2 - m) x - 3 đồng biến trong R Bài 2: Cho hàm số y = 2x có đồ thị (d1); hàm số y=x-1 có đồ thị (d2) . a / Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ. b/ Xác định tọa độ giao điểm A của (d1) và (d2) bằng phép toán. c/ Viết ph / trình đường thẳng (D) song song với (d2) và điểm M(6;3) qua
b: Để hàm số đồng biến thì 2-m>0
hay m<2