cho x=\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\).CMR x chia het cho 2^10
Cho x=\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)^10
cmr x chia hét cho 1024
cho \(x=\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)
chứng minh x thuộc N* và x chia hết cho 1024
Cho \(\xrightarrow[x->1]{lim}\dfrac{f\left(x\right)-10}{x-1}=5.\)
Tính \(\xrightarrow[x->1]{lim}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}\)
CMR
\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\) là một số nguyên chia hết cho 1024
cho \(lim_{x->1}\dfrac{f\left(x\right)-10}{x-1}=5\) tính giới hạn \(lim_{x->1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt[]{4f\left(x\right)+9}+3\right)}\) bằng bao nhiêu ?
Chọn \(f\left(x\right)=5x+5\)
Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)
Cho \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=5\). Tính \(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)
Chọn F(x)=5x-23
\(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5x-23-2}{x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{5x-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5\left(x-5\right)}{x-5}=5\)
=>f(x)=5x-23 thỏa mãn yêu cầu đề bài
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\cdot f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\left(5x-23\right)+10}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}-4+\sqrt{\left(5x-23\right)^3+1}-3}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15x-59-16}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3+1-9}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3-8}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23-2\right)\left[\left(5x-23\right)^2+2\left(5x-23\right)+4\right]}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15}{\sqrt{15x-59}+4}+\dfrac{5\cdot\left(25x^2-230x+529+10x-46+4\right)}{\sqrt{\left(5x-23\right)^3+1}+3}}{x+5}\)
\(=\dfrac{\dfrac{15}{\sqrt{15\cdot5-59}+4}+\dfrac{5\left(25\cdot5^2-220\cdot5+487\right)}{\sqrt{\left(5\cdot5-23\right)^3+1}+3}}{5+5}\)
\(=\dfrac{\dfrac{15}{8}+\dfrac{5\cdot12}{6}}{10}=\dfrac{19}{16}\)
Do \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}\) hữu hạn nên \(f\left(x\right)-2=0\) có nghiệm \(x=5\)
\(\Rightarrow f\left(5\right)=2\)
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}-4+\sqrt{f^3\left(x\right)+1}-3}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{3\left[f\left(x\right)-2\right]}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{\left[f\left(x\right)-2\right]\left[f^2\left(x\right)+2f\left(x\right)+4\right]}{\sqrt{f^3\left(x\right)+1}+3}}{\left(x-5\right)\left(x+5\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{f\left(x\right)-2}{x-5}.\dfrac{3}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{f\left(x\right)-2}{x-5}.\dfrac{f^2\left(x\right)+2f\left(x\right)+4}{\sqrt{f^3\left(x\right)+1}+3}}{x+5}\)
\(=\dfrac{5.\dfrac{3}{\sqrt{3.2+10}+4}+5.\dfrac{2^2+2.2+4}{\sqrt{2^3+1}+3}}{5+5}=\)
Bài 1:Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) ,\(g\left(x\right)=\sqrt{f\left(x\right)+6}-2\sqrt[3]{f\left(x\right)-2}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt{x}-1\right)g\left(x\right)}\)
Bài 2: Cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2ax^2+30}-bx-5}{x^3-3x+2}=c\left(a;b;c\in R\right)\)
Tính giá trị \(P=a^2+b^2+36c\)
Bài 3: Cho a;b là các số nguyên dương. Biết \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+ax}+\sqrt[3]{8x^3+2bx^2+3}\right)=\dfrac{7}{3}\)
Tinh P= a+2b
Bài 4:Cho a,b,c thuộc R với a>0 thỏa mãn
\(c^2+a=2\) và \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-3\)
Tính P= a+b+5c
Bài 5:
Mấy câu này khó nên mong các bạn giúp mình với. Mai mình phải kiểm tra rồi
Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?
Làm tự luận thì hơi tốn thời gian đấy (đi thi sẽ không bao giờ đủ thời gian đâu)
Câu 1:
Kiểm tra lại đề, \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}\) hay một trong 2 giới hạn sau: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x}-1}{g\left(x\right)}\) hoặc \(\lim\limits_{x\rightarrow1}\dfrac{g\left(x\right)}{\sqrt[]{x}-1}\)
Vì đúng như đề của bạn thì \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}=\dfrac{1}{0}=\infty\), cả \(g\left(x\right)\) lẫn \(\sqrt{x}-1\) đều tiến tới 0 khi x dần tới 1
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
Cho \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)-32}{x-2}=3\). Tính \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{3f\left(x\right)+10}+\sqrt[3]{f\left(x\right)-5}-2x-3}{x^2+x-6}\)
Em kiểm tra lại đề, chỗ \(f\left(x\right)-32\) kia có vẻ sai, vì như thế thì biểu thức đã cho ko phải dạng vô định