Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=5\). Tính \(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)

Nguyễn Lê Phước Thịnh
8 tháng 1 2024 lúc 18:18

Chọn F(x)=5x-23

\(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5x-23-2}{x-5}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{5x-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5\left(x-5\right)}{x-5}=5\)

=>f(x)=5x-23 thỏa mãn yêu cầu đề bài

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\cdot f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\left(5x-23\right)+10}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}-4+\sqrt{\left(5x-23\right)^3+1}-3}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15x-59-16}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3+1-9}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3-8}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23-2\right)\left[\left(5x-23\right)^2+2\left(5x-23\right)+4\right]}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15}{\sqrt{15x-59}+4}+\dfrac{5\cdot\left(25x^2-230x+529+10x-46+4\right)}{\sqrt{\left(5x-23\right)^3+1}+3}}{x+5}\)

\(=\dfrac{\dfrac{15}{\sqrt{15\cdot5-59}+4}+\dfrac{5\left(25\cdot5^2-220\cdot5+487\right)}{\sqrt{\left(5\cdot5-23\right)^3+1}+3}}{5+5}\)

\(=\dfrac{\dfrac{15}{8}+\dfrac{5\cdot12}{6}}{10}=\dfrac{19}{16}\)

Nguyễn Việt Lâm
8 tháng 1 2024 lúc 18:31

Do \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}\) hữu hạn nên \(f\left(x\right)-2=0\) có nghiệm \(x=5\)

\(\Rightarrow f\left(5\right)=2\)

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}-4+\sqrt{f^3\left(x\right)+1}-3}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{3\left[f\left(x\right)-2\right]}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{\left[f\left(x\right)-2\right]\left[f^2\left(x\right)+2f\left(x\right)+4\right]}{\sqrt{f^3\left(x\right)+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{f\left(x\right)-2}{x-5}.\dfrac{3}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{f\left(x\right)-2}{x-5}.\dfrac{f^2\left(x\right)+2f\left(x\right)+4}{\sqrt{f^3\left(x\right)+1}+3}}{x+5}\)

\(=\dfrac{5.\dfrac{3}{\sqrt{3.2+10}+4}+5.\dfrac{2^2+2.2+4}{\sqrt{2^3+1}+3}}{5+5}=\)


Các câu hỏi tương tự
camcon
Xem chi tiết
Trần Minh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
Hoàng Anh
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Trần Hà Linh
Xem chi tiết
trà a
Xem chi tiết