Do \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)-3}{x-2}=5\Rightarrow\) chọn \(f\left(x\right)=5\left(x-2\right)+3=5x-7\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-7+6}-\sqrt[3]{x+25}}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-1}-3+3-\sqrt[3]{x+25}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{5\left(x-2\right)}{\sqrt[]{5x-1}+3}-\dfrac{x-2}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{5}{\sqrt[]{5x-1}+3}-\dfrac{1}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}\right)=\dfrac{5}{3+3}-\dfrac{1}{9+9+9}=\dfrac{43}{54}\)