Do giới hạn đã cho hữu hạn \(\Rightarrow\sqrt{mx+n}-1=0\) có nghiệm \(x=2\)
\(\Rightarrow\sqrt{2m+n}=1\Rightarrow n=-2m+1\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{mx-2m+1}-1}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{mx-2m}{\left(x-2\right)\left(x+2\right)\left(\sqrt{mx-2m+1}+1\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{m}{\left(x+2\right)\left(\sqrt{mx-2m+1}+1\right)}=\dfrac{m}{4\left(\sqrt{2m-2m+1}+1\right)}=\dfrac{m}{8}\)
\(\Rightarrow\dfrac{m}{8}=1\Rightarrow m=8\Rightarrow n=-15\)