Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TXT Channel Funfun
Xem chi tiết
nga thanh
Xem chi tiết
Hồ Xuân Thái
Xem chi tiết
Hồ Xuân Thái
Xem chi tiết
Mai Thanh Hải
5 tháng 9 2017 lúc 20:09

Ta có :

\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\) (1)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)( Cộng mỗi phân số vs 1 )

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\) (2)

Với a ,b ,c ,d là các số dương , áp dụng BĐT Svacsơ , ta có :

\(\hept{\begin{cases}\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d}\\\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\end{cases}}\)

Suy ra : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)+4\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\left(2\right)\)\(\Leftrightarrow\left(1\right)\)( Điều cần CM )

Aeris
Xem chi tiết
Fire Sky
26 tháng 3 2019 lúc 15:30

\(Để\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

Thì \(\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)=4\)(Áp dụng Cô-si dạng phân thức)

\(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)(Đpcm)

   Học tốt ~~

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Phạm Lan Hương
9 tháng 1 2020 lúc 15:52

áp dụng bất đẳng thức Cauchy-schwaz

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}\)=\(\frac{16}{a+b+c+d}\)(đpcm)

Khách vãng lai đã xóa
Lê Đăng Khoa
Xem chi tiết
Tran Le Khanh Linh
21 tháng 7 2020 lúc 20:04

Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)

Cộng theo vế và a+b+c+d=1 ta có đpcm

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)

\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)

Khách vãng lai đã xóa
Kiệt Nguyễn
21 tháng 7 2020 lúc 20:06

Bunyakovsky dạng phân thức

Khách vãng lai đã xóa
Phan Nghĩa
21 tháng 7 2020 lúc 20:14

Theo bất đẳng thức Svacxo :

\(VT\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{4}\)

Vậy ta có điều phải chứng minh

Khách vãng lai đã xóa
Đức Lê Minh
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Lê Chí Công
28 tháng 12 2015 lúc 23:28

a/b+c+d>a/a+b+c+d

b/a+c+d>b/a+b+c+d

c/a+b+d>c/a+b+c+d

d/a+b+c>d/a+b+c+d

mả  a+b+c+d/a+b+c+d=1

=>a/b+c+d+b/a+c+d+c/a+b+d+d/a+b+c> hoac =1

Vay...