Toán 9 rút gọn (cần gấp !!!!) : \(A=\sqrt{5-2\sqrt{1+\sqrt{5}}}-\sqrt{5+2\sqrt{1+\sqrt{5}}}\)
có ai biết giải bài này không giúp mình với mình đang cần gấp, xin cảm ơn
Bài 20: rút gọn
1, \(\sqrt{9-4\sqrt{5}}.\sqrt{9+4\sqrt{5}}\)
2, \(\left(2\sqrt{2}-6\right).\sqrt{11+6\sqrt{2}}\)
3, \(\sqrt{2}.\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)\)
4, \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
5, \(\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}\)
Bài 21: rút gọn
1, \(5\sqrt{\dfrac{1}{5}}\) 2, \(\dfrac{12}{5}\sqrt{\dfrac{5}{4}}\)
3, \(\dfrac{30}{5\sqrt{6}}\) 4, \(\dfrac{20}{2\sqrt{5}}\)
5, \(\dfrac{2-\sqrt{2}}{\sqrt{2}}\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
1) rút gọn
A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
B= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
C= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
Giúp mk vs ạ mk cần gấp
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)
\(=\dfrac{3}{2}\)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
\(B=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}=\dfrac{6}{4}=\dfrac{3}{2}\)
\(C=\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(C=2-\sqrt{3}+3+\sqrt{3}=5\)
1, Rút gọn: A = \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
2, Giải phương trình: \(\sqrt{4x^2-12x+9}=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Câu 1:
\(A=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
Câu 2:
\(\Leftrightarrow\left|2x-3\right|=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=2\sqrt{3}\\2x-3=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{3}+3}{2}\\x=\dfrac{-2\sqrt{3}+3}{2}\end{matrix}\right.\)
`1)A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}`
`A=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}`
`A=\sqrt{(\sqrt{3}+\sqrt{2})^2}-\sqrt{(\sqrt{3}-\sqrt{2})^2}`
`A=|\sqrt{3}+\sqrt{2}|-|\sqrt{3}-\sqrt{2}|`
`A=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}`
_________________________________________________
`2)\sqrt{4x^2-12x+9}=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}`
`<=>\sqrt{4x^2-12x+9}=2\sqrt{2}` (Như câu `1`)
`<=>4x^2-12x+9=8`
`<=>4x^2-12x+1=0`
Ptr có:`\Delta'=(-6)^2-4=32 > 0`
`=>` Ptr có `2` nghiệm pb
`x_1=[-b+\sqrt{\Delta'}]/a=[-(-6)+\sqrt{32}]/4=[3+2\sqrt{2}]/2`
`x_2=[-b-\sqrt{\Delta'}]/a=[-(-6)-\sqrt{32}]/4=[3-2\sqrt{2}]/2`
Vậy `S={[3+-2\sqrt{2}]/2}`
\(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)
đề bài rút gọn ak
mình đang cần gấp
\(=\sqrt{\left(3-2\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\\ =2\sqrt{5}-3-2-\sqrt{5}=\sqrt{5}-5\)
Ta có: \(\sqrt{29-2\sqrt{180}}-\sqrt{9+4\sqrt{5}}\)
\(=2\sqrt{5}-3-\sqrt{5}-2\)
\(=\sqrt{5}-5\)
Rút gọn
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B= \(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)
\(=8+2\sqrt{5}-2=6+2\sqrt{5}\)
\(=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)
\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)
\(=10,94430659\)
\(\text{Lm hơi vắn tắt thông cảm nha!!}\)
mấy bạn 2k2 giúp mình với mk cần gấp, thanks nhiều
Rút gọn biểu thức
a) A=\(\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}-1}-\frac{10+2\sqrt{5}}{\sqrt{5+}1}+\sqrt{5}-1\)
b) B=\(\sqrt{\left(1-\sqrt{2014}\right)^2}.\sqrt{2015+2\sqrt{2014}}\)
c) C=\(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Cho bt: P=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}.\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a, Rút gọn P
b, P khi x = 6-2\(\sqrt{5}\)
giải hộ e với e đang cần gấp để đối chiếu kết quả!
a: \(=\dfrac{x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{-5\sqrt{x}-5+x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-3\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
b: khi x=6-2căn 5 thì \(P=\dfrac{6-2\sqrt{5}-3\sqrt{5}+3-5}{\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)\cdot\sqrt{5}}\)
\(=\dfrac{-5\sqrt{5}+4}{\sqrt{5}\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)}\)
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\)\(\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
Rút gọn biểu thức A
\(B=x^3-3x+2000\). Rút gọn B biết \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Mong mọi người giúp đỡ mình ạ , mình rất cần ạ
1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
Rút gọn biểu thức
1) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
2) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}+2-\sqrt{5}\)
\(=4\)
2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)
\(=3-\sqrt{3}+3+\sqrt{3}\)
\(=6\)