Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Angela jolie
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
trần thị trâm anh
Xem chi tiết
tran nguyen bao quan
15 tháng 9 2018 lúc 20:17

ĐK:x\(\ge2\)\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+1}-\sqrt{x-2-2\sqrt{x}-2+1}=1\Leftrightarrow\sqrt{\left(\sqrt{x-2}+1\right)^2}-\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\Leftrightarrow\left|\sqrt{x-2}+1\right|-\left|\sqrt{x-2}-1\right|=1\Leftrightarrow\sqrt{x-2}+1-\left|\sqrt{x-2}-1\right|=1\)(1)

TH1: nếu \(\sqrt{x-2}< 1\Leftrightarrow x-2< 1\Leftrightarrow x< 3\) và x>2 thì

(1)⇔\(\sqrt{x-2}+1-1+\sqrt{x-2}=1\Leftrightarrow2\sqrt{x-2}=1\Leftrightarrow\sqrt{x-2}=\dfrac{1}{2}\Leftrightarrow x-2=\dfrac{1}{4}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\)TH2: nếu \(\sqrt{x-2}\ge1\Leftrightarrow x\ge3\) thì

(1)\(\Leftrightarrow\sqrt{x-2}+1-\sqrt{x-2}+1=1\Leftrightarrow2=1\left(ktm\right)\)

Vậy S={\(\dfrac{9}{4}\)}

Vũ Đình Thái
Xem chi tiết
Vuy năm bờ xuy
9 tháng 6 2021 lúc 22:02

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\) 

Dễ thấy x=0 là nghiệm của phương trình (1)

Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được

\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)

\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)

Vậy nghiệm của phương trình (1) là x=0

-Chúc bạn học tốt-

Helen Nguyễn
9 tháng 6 2021 lúc 22:19

Bài giải:

Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)\(-4\le x\le4\)

Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)

\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)

\(x=0\left(tm\right)\)

Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x

Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)

Vậy pt có nghiệm duy nhất là \(x=0\)

Đinh Hoàng Nhất Quyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2023 lúc 15:27

=>|x^2+2|=x^2+2x+5

=>x^2+2=x^2+2x+5(Do x^2+2>=2>0 với mọi x)

=>2x+5=2

=>2x=-3

=>x=-3/2

HT.Phong (9A5)
3 tháng 9 2023 lúc 15:27

\(\sqrt{\left(x^2+2\right)^2}=x^2+2x+5\)

\(\Leftrightarrow\left|x^2+2\right|=x^2+2x+5\)  

Mà: \(x^2+2\ge2>0\forall x\)

\(\Leftrightarrow x^2+2=x^2+2x+5\)

\(\Leftrightarrow x^2-x^2+2x+5-2=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

nguyen huu duc
Xem chi tiết
trần thị trâm anh
Xem chi tiết
Nguyễn Minh Quang 123
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 19:15

Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)

Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)

\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)

\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)

Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)

Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)

\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)

\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)

Nếu t - 1 = 0 => t = 1 ta có  \(x=2-1^2=1\)(tmđk)Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.

Vậy pt có nghiệm x = 1

Nguyễn Tùng Dương
13 tháng 8 2016 lúc 21:03

toán mấy ạ

Nguyễn Minh Quang 123
16 tháng 8 2016 lúc 18:05

sai đề đó bạn

loveyoongi03
Xem chi tiết
Nhật Minh
Xem chi tiết
Mỹ Duyên
31 tháng 3 2018 lúc 11:46

Ta có: \(\sqrt{x^2+7}-\sqrt{x^2-5}=x-1\) (ĐK: \(x\ge\sqrt{5}\) )

\(\Leftrightarrow\dfrac{x^2+7-16}{\sqrt{x^2+7}+4}-\dfrac{x^2-5-4}{\sqrt{x^2-5}+2}-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{x+3}{\sqrt{x^2+7}+4}-\dfrac{x+3}{\sqrt{x^2-5}+2}-1\right)=0\)

Dễ thấy: \(\dfrac{x+3}{\sqrt{x^2+7}+4}-\dfrac{x+3}{\sqrt{x^2-5}+2}-1\ne0\)

\(\Leftrightarrow x=3\left(TM\right)\)

Nhật Minh
31 tháng 3 2018 lúc 10:33

Nguyễn Thanh HằngXuân DinhBích Ngọc Huỳnh

Nhật Minh
31 tháng 3 2018 lúc 10:38

Nguyễn Anh ThưHoàng Thị Anh Thưtrần thị diệu linh