Đưa thừa số vào trong dấu căn:
a) −\(\frac{a}{b}\sqrt{\frac{b}{a}}\)(a>0,b>0)
Câu 3: Đưa thừa số vào trong dấu căn:
a. 2a\(\sqrt{3a^2b}\) với a≥o và b≥0
b. -3ab2\(\sqrt{2a^2b^4}\) với a<0
\(a,=\sqrt{12a^4b}\\ b,\sqrt{18\left(-a\right)^4b^8}\)
Câu 4: Đưa thừa số ra ngoài dấu căn:
a. \(\sqrt{72a^2b^4}\) với a ≥ 0
b. \(\sqrt{27a^3b^2}\) với a ≥ 0 và b < 0
\(a,=6\left|a\right|b^2\sqrt{2}=6ab^2\sqrt{2}\\ b,=3\left|ab\right|\sqrt{3a}=-3ab\sqrt{3a}\)
Đưa thừa số vào trong dấu căn
a)\(-\frac{a}{b}\sqrt{\frac{b}{a}}\) (a>0, b>0)
b)\(\frac{1}{2x-1}\sqrt{5-20x-20x^2}\) (x>1/2)
c) (x - 5) \(\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
Đưa một thừa số vào trong dấu căn.
a)$-\dfrac{2}{3} \sqrt{ab}$ với $a>0, b \geq 0 \text {; }$
b) $a \sqrt{\frac{3}{a}}$ với $a>0, b \geq 0 \text {; }$
c) $a\sqrt{7}$ với $\mathrm{a} \geq 0;$
d) $b \sqrt{3}$ với $b<0;$
e) $a b \sqrt{\dfrac{a}{b}}$ với $b \geq 0, a>0;$
f) $a b \sqrt{\dfrac{1}{a}+\dfrac{1}{b}}$ với $a>0 , b>0$.
a, \(-\frac{2}{3}\sqrt{ab}=-\sqrt{\frac{4ab}{9}}\)
b, \(a\sqrt{\frac{3}{a}}=\sqrt{\frac{3a^2}{a}}=\sqrt{3a}\)
c, \(a\sqrt{7}=\sqrt{7a^2}\)
d, \(b\sqrt{3}=\sqrt{3b^2}\)
e, \(ab\sqrt{\frac{a}{b}}=\sqrt{\frac{a^3b^2}{b}}=\sqrt{a^3b}\)
f, \(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\frac{a^2b^2}{a}+\frac{a^2b^2}{b}}=\sqrt{ab^2+a^2b}\)
a,\(-\sqrt{\dfrac{4}{9}ab}\)
d, trừ căn (3b^2)
b, căn 3a
c, căn 7a^2
e, căn của a^3b
f, căn của a^2b+ab^2
a) -√(4/9 *ab)
b) √3a
c) √7a²
d) √3b²
e) √a³b
f)√(ab²+a²b)
Đưa thừa số vào trong dấu căn:
a) \(-\frac{a}{b}\sqrt{\frac{b}{a}}\left(a>0,b>0\right)\)
b)\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x> \(\frac{1}{2}\)
c) \(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
a)\(=-\sqrt{\left(\frac{a}{b}\right)^2\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a^2}{b^2}\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a}{b}}\)
b) \(=\sqrt{\left(\frac{1}{2x-1}\right)^2\cdot5\left(4x^2-4x+1\right)}\)
\(=\sqrt{\frac{5}{\left(2x-1\right)^2}\cdot\left(2x-1\right)^2}\)
\(=\sqrt{5}\)
c)\(=\sqrt{\left(x-5\right)^2\cdot\frac{-3}{\left(x-5\right)\left(x+5\right)}}\)
\(=\sqrt{\frac{-3\left(x-5\right)}{x+5}}\)
\(=\sqrt{\frac{15-3x}{x+5}}\)
Khử mẫu của biểu thức lấy căn
\(\sqrt{\frac{\left(1+\sqrt{2}\right)^3}{27}}\)
Đưa 1 thừa số vào trong dấu căn
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}vớia>0,b>0\)
Lời giải:
\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)
\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)
Đưa thừa số vào trong dấu căn rồi so sánh các cặp số
a)\(2\sqrt{5}\) và \(5\sqrt{2}\)
b) \(3\sqrt{13}\)và \(4\sqrt{11}\)
c) \(\frac{3}{4}.\sqrt{7}\)và \(\frac{2}{5}.\sqrt{5}\)
d) \(\frac{2}{a-b}.\sqrt{\frac{a^2-b^2}{2}}\) ( với 0 < a < b )
a)Ta có: \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)
\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)
Vì \(\sqrt{20}< \sqrt{50}\)
Nên \(2\sqrt{5}< 5\sqrt{2}\)
b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)
Vì \(\sqrt{117}< \sqrt{176}\)
Nên \(3\sqrt{13}< 4\sqrt{11}\)
c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)
\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)
Vì \(\sqrt{\frac{63}{16}}>1\)
\(\sqrt{\frac{4}{5}}< 1\)
Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)
Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)
đưa thừa số ra ngoài dấu căn
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)với a,b,x,y>0
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)
\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)
\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)
Đưa thừa số vào trong dấu căn a.\(\sqrt{\dfrac{-15}{a}}\)(a<0)
\(a\cdot\sqrt{\dfrac{-15}{a}}=\sqrt{\dfrac{-15a^2}{a}}=\sqrt{-15a}\)
\(a\sqrt{\dfrac{-15}{a}}=\sqrt{a^2.\dfrac{-15}{a}}=\sqrt{\dfrac{-15a^2}{a}}=\sqrt{-15a}\left(a< 0\right)=\sqrt{15a}\)