\(a,=\sqrt{12a^4b}\\ b,\sqrt{18\left(-a\right)^4b^8}\)
\(a,=\sqrt{12a^4b}\\ b,\sqrt{18\left(-a\right)^4b^8}\)
Câu 4: Đưa thừa số ra ngoài dấu căn:
a. \(\sqrt{72a^2b^4}\) với a ≥ 0
b. \(\sqrt{27a^3b^2}\) với a ≥ 0 và b < 0
Câu 48* : Với a 0 thì -2a\(b^2\sqrt{5}\)bằng :
A. \(\sqrt{20a^2b^4}\) ; B. -\(\sqrt{20a^2b^4}\); C. \(\sqrt{10a^2b^4}\) ; D. -\(\sqrt{10a^2b^4}\) .
a : \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a ≥ 0
b : \(\sqrt{3a}.\sqrt{\dfrac{52}{a}}\)với a ≥ 0
c : \(2y^2.\sqrt{\dfrac{x^4}{4y^2}}\)với y ≤ 0
Bài 2: Khử mẫu biểu thức lấy căn:
a)\(\sqrt{\dfrac{3}{2a}}\) với a\(\ge\)0 b) \(\sqrt{\dfrac{3ab}{2}}\) với ab>0
cho a,b,c >0 hãy đơn giản bt :
A=\(\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{2a+b-\sqrt{a^2+2ab}}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Cho a,b > 0. Hãy đơn giản biểu thức :
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Bài : a):Chứng minh: \(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
b): Tìm GTNN của: P= \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\)biết a,b,c > 0 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
Giúp mình với các cậu!!!
cho a, b >0. hãy đơn giản biểu thức \(\frac{\sqrt{a^{3^{ }}+2a^2b}+\sqrt{a^4+2ab}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
a) Tìm x để biểu thức \(\sqrt{2x-10}\) có nghĩa
b) Viết biểu thức đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{A^2B}\) (với B ≥ 0) Áp dụng tính \(\sqrt{72}\)
c) Thực hiện phép tính :
A = \(\sqrt{16}+\sqrt{81}\)
B = \(\sqrt{\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}}\)
C = \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\left(2+\sqrt{3}\right)\)