giải phương trình sau :
\(\sqrt{2x-2}-\sqrt{6x-9}=16x^2-48x+35\)
giải các phương trình sau :
a.\(\sqrt{2x-2}-\sqrt{6x-9}=16x^2-48x+35\)
b.\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
Giải phương trình sau
a)\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
b) \(\sqrt{2x-2}-\sqrt{6x-9}=16x^2-48x+35\)
a/ Điều kiện b tự làm nhé
Đặt \(\hept{\begin{cases}\sqrt{4x^2+5x+1}=a\left(a\ge0\right)\\2\sqrt{x^2-x+1}=b\left(b\ge0\right)\end{cases}}\)
Ta có: \(a^2-b^2=9x-3\)từ đó pt ban đầu thành
\(a-b=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\1=a+b\end{cases}}\)
Tới đây thì đơn giản rồi b làm tiếp nhé
Giải pt:
\(\sqrt{2x-2}-\sqrt{6x-9}=16x^2-48x+35\)
ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(16x^2-48x+35+\left(\sqrt{6x-9}-\sqrt{2x-2}\right)=0\)
\(\Leftrightarrow\left(4x-7\right)\left(4x-5\right)+\dfrac{4x-7}{\sqrt{6x-9}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(4x-7\right)\left(4x-5+\dfrac{1}{\sqrt{6x-9}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow4x-7=0\)
giải pt
\(\sqrt{2x-2}-\sqrt{6x-9}=16x^2-48x+35\)
giải phương trình
\(\sqrt{2x-2}\)-\(\sqrt{6x-9}\)=\(16x^2\)-48x+35
\(\sqrt{x-2}\) +\(\sqrt{4-x}\)=\(2x^2\)-5x-1
các bạn giúp mình nhé, mình cảm ơn
1) ĐK: \(x\ge\frac{3}{2}\)
pt \(\Leftrightarrow\frac{2x-2-\left(6x-9\right)}{\sqrt{2x-2}+\sqrt{6x-9}}=16x^2-28x-20x+35\)
\(\Leftrightarrow\frac{-4x+7}{\sqrt{2x-2}+\sqrt{6x-9}}=4x\left(4x-7\right)-5\left(4x-7\right)\)
\(\Leftrightarrow-\frac{4x-7}{\sqrt{2x-2}+\sqrt{6x-9}}=\left(4x-7\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(4x-7\right)\left(\frac{1}{\sqrt{2x-2}+\sqrt{6x-9}}+4x-5\right)=0\)
\(\Leftrightarrow4x-7=0\Leftrightarrow x=\frac{7}{4}\) (nhận)
2) ĐK: \(2\le x\le4\)
pt \(\Leftrightarrow\sqrt{x-2}+\sqrt{a-x}=2\left(x^2-6x+9\right)+7x-19\)
\(\Leftrightarrow\sqrt{x-2}-\left(7x-20\right)+\sqrt{4-x}-1=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-2-\left(7x-20\right)^2}{\sqrt{x-2}+7x-20}+\frac{4-x-1}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(134-49x\right)}{\sqrt{x-2}+\left(7x-20\right)}+\frac{3-x}{\sqrt{4-x}+1}=2\left(x-3\right)^2\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\) (nhận)
giải các phương trình sau
a. \(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
b. \(\sqrt{x^2-6x+9}=1\)
a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
=>\(17\sqrt{3x}=17\)
=>\(\sqrt{3x}=1\)
=>\(x=\dfrac{1}{3}\)
b.Ta có:\(\sqrt{x^2-6x+9}=1\)
=>\(\sqrt{\left(x-3\right)^2}=1\)
=>\(\left|x-3\right|=1\)
Vậy có hai trường hợp:
TH1:\(x-3=1\)
=>\(x=4\)
TH2:\(x-3=-1\)
=>\(x=2\)
a) ĐKXĐ: \(x\ge0\)
Ta có: \(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
\(\Leftrightarrow2\cdot2\cdot\sqrt{3x}-3\cdot\sqrt{3x}+4\cdot4\cdot\sqrt{3x}=17\)
\(\Leftrightarrow4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
\(\Leftrightarrow17\sqrt{3x}=17\)
\(\Leftrightarrow\sqrt{3x}=1\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)(nhận)
Vậy: \(S=\left\{\dfrac{1}{3}\right\}\)
b) ĐKXĐ: \(x\in R\)
Ta có: \(\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-3\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: S={2;4}
Giải pt : √(2x-2) - √(6x-9) = 16x^2-48x+35
Giải các phương trình sau:
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Lời giải:
a. Đề thiếu
b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$
$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$
$\Leftrightarrow 2x-3=3$
$\Leftrightarrow x=3$ (tm)
Nếu $1\leq x< 2$ thì:
$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)
Nếu $x< 1$ thì:
$1-x+2-x=3$
$\Leftrightarrow x=0$ (tm)
giải bất phương trình:
\(\sqrt{2x^3+4x^2+4x}-\sqrt[3]{16x^3+12x^2+6x-3}\ge4x^4+2x^3-2x-1\)