Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
๓เภђ ภوยץễภ ђảเ
Xem chi tiết
Đặng Ngọc Quỳnh
17 tháng 10 2020 lúc 18:12

B1:

Từ \(b=\frac{a+c}{2}\Rightarrow2b=a+c\left(1\right)\)

Từ \(c=\frac{2bd}{b+a}\)thay vào (1) ta được:

\(2b=a+\frac{2bd}{b+a}\)

\(\Leftrightarrow2b\left(b+a\right)=a\left(b+a\right)+2bd\)

\(\Leftrightarrow2b^2+2ab=ab+a^2+2bd\)

\(\Leftrightarrow2b^2+ab-a^2-2bd=0\)

\(\Leftrightarrow2b\left(b-d\right)+a\left(b-a\right)=0\)

\(\Leftrightarrow2b\left(b-d\right)=a\left(a-b\right)\Leftrightarrow\frac{2b}{a}=\frac{a-b}{b-d}\)

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
17 tháng 10 2020 lúc 18:15

B2: Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}hay2ab=c\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

Do đó: \(\frac{a-c}{c-b}=\frac{a}{b}\)(đpcm)

Khách vãng lai đã xóa
Tuấn Nguyễn
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết

Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)

\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )

Pain Thiên Đạo
19 tháng 1 2018 lúc 1:00

bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé

đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)

áp dụng định lí six paths of Pain :) ta có

\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì  

thay vào ta được :)

\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

áp dụng cô si sáp cho 2 số ta có

\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng

\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng

\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng

cộng các vế lại ta được và rút 2/2 ta được :))

\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

hình như BDT  đã được chứng minh :))

theo bài của bạn Phạm quốc cường ta có :))

\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))

tức là  \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))

tức là định Lí six paths of Pain luôn đúng :))

dấu = xảy ra khi nào thì mình éo biết được :))

: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))

Agami Raito
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2020 lúc 22:04

\(\Leftrightarrow\frac{1}{\left(\frac{b}{a}\right)^2+\frac{b}{a}+1}+\frac{1}{\left(\frac{c}{b}\right)^2+\frac{c}{b}+1}+\frac{1}{\left(\frac{a}{c}\right)^2+\frac{a}{c}+1}\ge1\)

Đặt \(\left(\frac{b}{a};\frac{c}{b};\frac{a}{c}\right)=\left(m;n;p\right)\Rightarrow mnp=1\)

Ta cần chứng minh: \(\frac{1}{m^2+m+1}+\frac{1}{n^2+n+1}+\frac{1}{p^2+p+1}\ge1\) với điều kiện \(mnp=1\)

Đây là BĐT Vasc rất nổi tiếng

Đặt \(\left(m;n;p\right)=\left(\frac{yz}{x^2};\frac{zx}{y^2};\frac{xy}{z^2}\right)\):

\(VT=\frac{x^4}{x^4+x^2yz+y^2z^2}+\frac{y^4}{y^4+xy^2z+z^2x^2}+\frac{z^4}{z^4+xyz^2+x^2y^2}\)

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\)

Ta chỉ cần chứng minh: \(\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\ge1\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

BĐT này hiển nhiên đúng (theo \(a^2+b^2+c^2\ge ab+bc+ca\))

Dấu "=" xảy ra khi \(a=b=c\)

xKraken
Xem chi tiết
Nguyễn Minh Quang
7 tháng 2 2021 lúc 19:52

bài 1. ta có

\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)

\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng

Bài 2

ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)

Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)

\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)

Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

Khách vãng lai đã xóa
cao hậu
7 tháng 2 2021 lúc 19:56

bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad 

\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0

\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0

\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)

Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)

=> đpcm tự kết luận

Khách vãng lai đã xóa
Dung Đặng Phương
Xem chi tiết
Phùng Minh Quân
25 tháng 1 2020 lúc 21:05

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

Khách vãng lai đã xóa
Nyatmax
25 tháng 1 2020 lúc 22:23

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

Khách vãng lai đã xóa
Nyatmax
26 tháng 1 2020 lúc 8:21

Cho o dong 2 la x,y,z nhe,ghi nham

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 2 2019 lúc 20:19

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)

Nguyễn Mạnh Tân
21 tháng 2 2019 lúc 20:19

Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

 \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)

Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)

\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)

Rút gọn 2 vế ta đc 0=0 

vì 0=0 luôn đúng nên cái phương trình trên luôn đúng

Nguyễn Hữu Tuyên
Xem chi tiết
Lightning Farron
10 tháng 1 2017 lúc 19:53

Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)

Tương tự ta có:

\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Cộng theo vế ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

Đẳng thức xảy ra khi \(a=b=c\)

NguyenThu Ha
Xem chi tiết
Vũ Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 14:03

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)