Chứng minh:
\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)⋮10\)
GIÚP MIK VỚI CÁC BẠN
giúp mik với ạ.
chứng minh rằng: \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n+1\right)+}...+3+2+1=n\) với n∈N
\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)
\(=\sqrt{2.\left(n+1\right).n:2-n}\)
\(=\sqrt{n\left(n+1\right)-n}\)
\(=\sqrt{n^2+n-n}\)
\(=\sqrt{n^2}\)
\(=n\)
10. CMR:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\) = n
giúp mình với
mình thank you các bạn rất nhiều!
\(A=\sqrt[]{1+2+3+...+\left(n-1\right)+n+...+3+2+1}\)
Ta có :
\(1+2+3+...+\left(n-1\right)=\left(n-1\right)+...+3+2+1=\left[\left(n-1\right)-1\right]+1\left(n-1+1\right):2\)
\(=\dfrac{\left(n-1\right)n}{2}\)
\(\Rightarrow A=\sqrt[]{\dfrac{\left(n-1\right)n}{2}.2+n}\)
\(\Rightarrow A=\sqrt[]{\left(n-1\right)n+n}\)
\(\Rightarrow A=\sqrt[]{n^2-n+n}\)
\(\Rightarrow A=\sqrt[]{n^2}\)
\(\Rightarrow A=n\left(n>0\right)\)
\(\Rightarrow dpcm\)
Các bạn ơi giúp mik nhanh nhé đang cần gấp:
Với mọi \(n\inℕ\), chứng minh rằng\(n.\left(n+3\right)\)luôn \(⋮2\)
Neu n la so chan thi n(n+3) chia het cho 2
Neu n la so le thi n+3 la so chan (vi le +le = chan)
=> n(n+3) chia het cho 2
vay n(n+3) chia het cho 2 voi moi n la stn
Chứng minh rằng : \(1^2+2^2+3^2+...+n^2=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\)
Các bạn giúp mình giải bằng 2 cách nha
Xét trường hợp n chẵn:
\(1^2+2^2+3^2+...+n^2=\left(1^2+3^2+5^2+...+\left(n-1\right)^2\right)+\left(2^2+4^2+6^2+...+n^2\right)\)
\(=\frac{\left(n-1\right).n.\left(n+1\right)+n\left(n+1\right).\left(n+2\right)}{6}\)
\(=\frac{n\left(n+1\right).\left(n-1+n+2\right)}{6}\)
\(=\frac{n\left(n+1\right).\left(2n+1\right)}{6}\)
Tương tự với trường hợp n lẻ . ta có \(\text{ĐPCM}\)
\(A=1^2+2^2+3^2+....+n^2\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+n\left[\left(n+1\right)-1\right]\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left[1.2+2.3+3.4+....+n\left(n+1\right)\right]-\left(1+2+3+....+n\right)\)
Ta có :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(cái này tự CM nha)
\(1+2+3+....+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(đpcm)
Chứng minh 3^(n+2)-2^(n+2)+3^n-2^n chia hết cho 10
Các bạn giúp mình với.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Chứng minh rằng với mọi số nguyên dương n mà \(n\equiv1\) ( mod 4) thì
\(\dfrac{n.\left(n+1\right)\left(n+3\right)\left(n+5\right)}{2}=P\) luôn luôn không thể là số lập phương
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn gợi ý giúp đỡ với ạ, em cám ơn nhiều ạ!
Đặt \(n=4k+1\) thì \(P=\dfrac{\left(4k+1\right)\left(4k+2\right)\left(4k+4\right)\left(4k+6\right)}{2}=8\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Dẫn đến \(Q=\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Lại có \(\left(2k+1,4k+1\right)=1;\left(2k+1,k+1\right)=1;\left(2k+1,2k+3\right)=1\) nên \(\left(2k+1,\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\right)=1\).
Do đó để Q là số lập phương thì \(2k+1\) và \(R=\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.
Mặt khác, ta có \(R=8k^3+22k^2+17k+3\)
\(\Rightarrow8k^3+12k^2+6k+1=\left(2k+1\right)^3< R< 8k^3+24k^2+24k+8=\left(2k+2\right)^3\) nên \(R\) không thể là số lập phương.
Vậy...
Chứng minh rằng với mọi số nguyên dương n thì \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) luôn luôn không thể là số lập phương.
P/S: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
lập phương hay chính phương thế bạn???
nếu là chính phương thì ntn nha
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
đặt \(t=n^2+3n\left(t\in Z^+\right)\)
phương trình thành:
\(t\left(t+2\right)=t^2+2t\)
vì \(t^2< t^2+2t< t^2+2t+1\)
hay \(t^2< t^2+2t< \left(t+1\right)^2\)
=> \(t^2+2t\) không thể là số chính phương
=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương
cô ơi, cô là người hay cô là chó vậy ạ ?, bài tập thầy con soạn bao nhiêu công sức cô ăn cắp như con chó không thèm ghi nguồn rồi đăng lên đây, thầy con đã nói rồi mà cô vẫn cố tình nhai đi nhai lại mấy tháng nay, bẩn không bằng con chó cô ạ, cô làm như vậy là báo hại đến học sinh bọn con thôi ạ, cô làm ơn bỏ cái trò đó đi ạ
Chứng minh với mọi số nguyên \(n\)thì \(n^3\left(n^2-7\right)^2-36n\)chia hết cho 7
GIÚP MIK VỚI
Ta có : \(n^3\left(n^2-7\right)^2-36n\)
\(=n[\left(n^3-7n\right)^2-36]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)
là tích của 7 số nguyên liên tiếp
\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)
hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)
CHứng minh rằng với n thuộc N* và n < 100 thì \(\frac{n}{\left(n+1\right)!}+\frac{n}{\left(n+2\right)!}+\frac{n}{\left(n+3\right)!}+.....+\frac{n}{100!}< \frac{1}{n!}\)1/n! . Lưu ý n!=1.2.3....n
ae giúp mik vs nha