\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\times\left(3^2+1\right)-2^n\times\left(2^2+1\right)\)
\(=3^n\times10-2^n\times5\)
\(3^n\times10⋮10\)\(2^n\times5⋮10\)=> \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
3^n+2 - 2^n+2 +3^n - 2^n
=> 3^n(3^2+1) - 2^n (2^2 + 1)
=> 10 . 3^n - 5 . 2^n
=> 10 . 3^n - 10. 2^n-1
=>10 . (3^n - 2^n-1 ) chia hết cho 10
=> ĐPCM