Giải phương trình : \(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1\)
1.So sánh A = \(\sqrt{2014}+\sqrt{2015}+\sqrt{2016}\) và B = \(\sqrt{2011}+\sqrt{2013}+\sqrt{2021}\) mà không dùng máy tính và bảng số.
2.Giải phương trình : \(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1\)
Giải hệ phương trình:
\(\left(x+\sqrt{x^2+\sqrt{2015}}\right)\left(y+\sqrt{y+\left(y^2 +\sqrt{2015}\right)}\right)=\sqrt{2015}\)
\(\left(x+\sqrt{x^2+\sqrt{2015}}\right)\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\)
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
3.
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)
\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)
\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)
\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)
Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$
$\Rightarrow x^2+4034+5> 4x+4034$
$\Rightarrow \text{VP}> \text{VT}$
Do đó pt vô nghiệm.
Giải phương trình:
a) \(x\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=6\)
b) \(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)
a) ĐKXĐ: \(x\ne-1\)
Phương trình tương đương: \(\dfrac{5x-x^2}{x+1}\left(x+\dfrac{5-x}{x+1}\right)=6\)
Đặt \(x+\dfrac{5-x}{x+1}=t\) \(\Rightarrow t=\dfrac{5-x+x^2+x}{x+1}=\dfrac{x^2+5}{x+1}\)
\(\Rightarrow-t=\dfrac{-x^2-5}{x+1}=\dfrac{5x-x^2-5x-5}{x+1}=\dfrac{5x-x^2-5\left(x+1\right)}{x+1}\)
\(=\dfrac{5x-x^2}{x+1}-5\)
\(\Rightarrow-t=\dfrac{5x-x^2}{x+1}-5\Rightarrow5-t=\dfrac{5x-x^2}{x+1}\)
Vậy Phương trình trở thành: \(\left(5-t\right)t=6\Leftrightarrow t^2-5t+6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t-3\right)=0\)
Khi t=2 thì \(x+\dfrac{5-x}{x+1}=2\Leftrightarrow x^2-2x+3=0\) (vô nghiệm)
Khi t=3 thì \(x+\dfrac{5-x}{x+1}=3\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\)
a) \(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)
\(\Leftrightarrow\left|x-2013\right|^5+\left|x-2014\right|^7=1\)
Dễ dàng thấy \(x=2013\) hoặc \(x=2014\) là các nghiệm của phương trình.
Nếu \(x>2014\) khi đó \(\left|x-2013\right|^5>\left|2014-2013\right|^5>1\) nên:
\(\left|x-2013\right|^5+\left|x-2014\right|^7>1\) .
Vì vậy mọi \(x>2014\) đều không là nghiệm của phương trình.
Nếu \(x< 2013\) khi đó \(\left|x-2014\right|^7>\left|2013-2014\right|^7>1\) nên:
\(\left|x-2013\right|^5+\left|x-2014\right|^7>1\).
Vì vậy mọi \(x< 2013\) đều không là nghiệm của phương trình.
Nếu \(2013< x< 2014\) khi đó:
\(\left|x-2013\right|< 1,\left|x-2014\right|< 1\).
Suy ra \(\left|x-2013\right|^5+\left|x-2014\right|^7< \left|x-2013\right|+\left|x-2014\right|\).
Ta xét tập giá trị của \(\left|x-2013\right|+\left|x-2014\right|\) với \(2013< x< 2014\).
Khi đó \(x-2013>0,x-2014< 0\).
Vì vậy \(\left|x-2013\right|+\left|x-2014\right|=x-2013+x-2014=1\).
Suy ra \(\left|x-2013\right|^5+\left|x-2014\right|^7< 1\).
vậy mọi x mà \(2013< x< 2014\) đều không là nghiệm của phương trình.
Kết luận phương trình có hai nghiệm là \(x=2013,x=2014\).
giải hệ phương trình :
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2016]{x}-\sqrt[2016]{y}=\left(\sqrt[2017]{y}-\sqrt[2017]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)=2\\\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\\\left(\sqrt{z}-15\right)\left(\sqrt{x}-13\right)=3\end{cases}}\)
Điều kiện xác định : \(x,y,z\ge0\)
Đặt \(a=\sqrt{x}-13\) , \(b=\sqrt{y}-14\) , \(c=\sqrt{z}-15\)
Ta có hệ : \(\hept{\begin{cases}ab=2\\bc=6\\ac=3\end{cases}}\). Nhân các pt theo vế : \(\left(abc\right)^2=36\Leftrightarrow\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)
TH1. Nếu abc = 6 thì kết hợp với mỗi pt ta được : \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)
TH2. Nếu \(abc=-6\) thì tương tự ta được \(\hept{\begin{cases}a=-1\\b=-2\\c=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=144\\y=144\\z=144\end{cases}}\)
Vậy ................................................
CHIU THOI
K NHA @@@@@@@ Nguyễn Phúc Lộc
Theo đầu bài ta có:
\(\hept{\begin{cases}\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)=2\\\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\\\left(\sqrt{z}-15\right)\left(\sqrt{x}-13\right)=3\end{cases}}\)
\(\Rightarrow\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\cdot\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)\cdot\left(\sqrt{z}-15\right)\left(\sqrt{x}-13\right)=2\cdot6\cdot3\)
\(\Rightarrow\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)\cdot\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=36\)
\(\Rightarrow\left[\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)\right]^2=36\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\\\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=-6\end{cases}}\)
Từ đây ta xảy ra 2 trường hợp
TH1: Nếu \(\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)=6\) thì:
\(\sqrt{x}-13=\frac{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}{\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}=\frac{6}{6}=1\)
\(\Rightarrow\sqrt{x}=14\)
\(\Rightarrow x=196\)
\(\sqrt{y}-14=\frac{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}{\left(\sqrt{x}-13\right)\left(\sqrt{z}-15\right)}=\frac{6}{3}=2\)
\(\Rightarrow\sqrt{y}=16\)
\(\Rightarrow y=256\)
\(\sqrt{z}-15=\frac{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)\left(\sqrt{z}-15\right)}{\left(\sqrt{x}-13\right)\left(\sqrt{y}-14\right)}=\frac{6}{2}=3\)
\(\Rightarrow\sqrt{z}=18\)
\(\Rightarrow z=324\)
\(\Rightarrow\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)
giải phương trình
a. \(x^2+2x+7=3\sqrt{\left(x^2+1\right)\left(x+3\right)}\)
b. \(\sqrt{3x-1}+\sqrt{2-x}=3\)
c. \(\sqrt{x+9}+2016\sqrt{x+6}=2016+\sqrt{\left(x+9\right)\left(x+6\right)}\)
giải phương trình :
a, \(\left(x+9\right)\left(2-\sqrt{9+2x}\right)^2=2x^2\)
b,\(\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2=4\left(x+1\right)^2\)
a. Đề bài sai, phương trình không giải được
b.
ĐKXĐ: \(x\ge-\dfrac{2}{3}\)
\(\left(2x+10\right)\left(\dfrac{1-\left(3+2x\right)}{1+\sqrt{3+2x}}\right)^2=4\left(x+1\right)^2\)
\(\Leftrightarrow\dfrac{\left(2x+10\right)4.\left(x+1\right)^2}{\left(1+\sqrt{3+2x}\right)^2}=4\left(x+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)^2=0\Rightarrow x=-1\\2x+10=\left(1+\sqrt{3+2x}\right)^2\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow2x+10=2x+4+2\sqrt{2x+3}\)
\(\Leftrightarrow\sqrt{2x+3}=3\)
\(\Leftrightarrow x=3\)