Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 19:14

làm r mà bạn ei

Nguyễn Việt Lâm
10 tháng 9 2021 lúc 20:33

Ta có:

\(x\sqrt{1-y^2}+y.\sqrt{1-x^2}\le\dfrac{1}{2}\left(x^2+1-y^2\right)+\dfrac{1}{2}\left(y^2+1-x^2\right)=1\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{1-x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=1\) (đpcm)

nguyễn ngọc phương linh
Xem chi tiết
nguyễn ngọc phương linh
1 tháng 11 2019 lúc 21:22

Á nhầm nhaaa cái cuối cùng là cộng z2 đó

Khách vãng lai đã xóa
Thanh Tùng DZ
1 tháng 11 2019 lúc 21:24

Ta có :

\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)

tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)

\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)

\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)

Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)

Khách vãng lai đã xóa
Giao Khánh Linh
1 tháng 11 2019 lúc 21:36

Ta có: \(\frac{1+\sqrt{1+x^2}}{x}=\frac{1+\sqrt{1\times\left(1+x^2\right)}}{x}\le\frac{1+\frac{1+1+x^2}{2}}{x}=\frac{2+\frac{x^2}{2}}{x}=\frac{2}{x}+\frac{x}{2}\)(Áp dụng bđt Cauchy ở chỗ \(\sqrt{1\times\left(1+x^2\right)}\)

Tương tự với b,c . Ta được VT\(\le\)\(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(\le\)\(\frac{x+y+z}{2}\)\(\frac{2xy+2yz+2xz}{xyz}\)\(\frac{x+y+z}{2}\)\(\frac{4xy+4yz+4xz}{2xyz}\)\(\frac{xyz}{2}+\frac{4xy+4yz+4xz}{2xyz}\)

Ta chứng minh được \(4xy+4yz+4xz\le\left(x+y+z\right)^2\)bằng phương pháp biến đổi tương đương

=> VT \(\le\)\(\frac{xyz}{2}+\frac{\left(x+y+z\right)^2}{2xyz}=\frac{xyz}{2}+\frac{\left(xyz\right)^2}{2xyz}=\frac{xyz}{2}+\frac{xyz}{2}=xyz\)(Điều phải cm)

Dấu = xảy ra <=> 

Khách vãng lai đã xóa
Hàn Nhật Hạ
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2021 lúc 21:30

\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)

\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)

\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)

\(\Rightarrow P\ge\sqrt{4038}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)

HT2k02
6 tháng 4 2021 lúc 21:32

Ta có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

Lại có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)

\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)

Dấu = khi \(x=y=\dfrac{2019}{2}\)

Yim Yim
Xem chi tiết
Tuyển Trần Thị
7 tháng 10 2017 lúc 12:25

áp dụng bdt amgm ta có

\(\sqrt{x}+\frac{1}{\sqrt{x}}\)+\(4\sqrt{y}+\frac{1}{\sqrt{y}}\) \(\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}\) =6

dau = xay ra khi \(\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

kl (x;y ) =(1;1/4)

Đinh Đức Hùng
7 tháng 10 2017 lúc 12:31

ĐKXĐ: \(x;y>0\)

\(\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)

Á dụng bđt Cauchy ta có :

 \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)

\(4\sqrt{y}+\frac{1}{\sqrt{y}}\ge2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}=4\)

\(\Rightarrow\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge6\) Hay \(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

Anhh Thưư
Xem chi tiết
Almoez Ali
2 tháng 5 2022 lúc 10:31

undefined

Đặng Anh Tuấn
Xem chi tiết
phạm thanh nga
Xem chi tiết
Nguyễn Linh Chi
14 tháng 1 2020 lúc 15:05

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

pt <=> \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(1)

Áp dụng cô-si 

VT \(\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=28\)

(1) xảy ra <=> \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)

<=> x = 11 ; y = 5 ( tm ) 

Kết luận:...

Khách vãng lai đã xóa
hiền nguyễn thị thúy
Xem chi tiết
alibaba nguyễn
26 tháng 9 2016 lúc 7:04

Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)

=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)

alibaba nguyễn
26 tháng 9 2016 lúc 7:06

Tương tự như vậy thì ta có 

A = xy + xz + yx + yz + zx + zy = 2

Thắng Nguyễn
26 tháng 9 2016 lúc 12:18

đây nhé Xem câu hỏi