Tính giá trị của biểu thức:
B= | \(0,8-2\frac{4}{5}\)|\(-\left(-3\right).\left(-4\right)+5:50\%\)Tính giá trị của biểu thức:
B\(=\)\(2x^5\) - \(5y^3\)+ 4 biết \(\left(x-1\right)^2\)+\(\left(y+2\right)^2\)\(=\)\(0\)
Ta có:
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay vào B ta có:
\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)
Cho biểu thức: \(A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\)
Hãy tính giá trị của A theo hai cách:
a) Tính giá trị của từng biểu thức trong dấu ngoặc trước.
b) Bỏ dấu ngoặc rồi nhóm các số hạng thích hợp.
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
Tính giá trị biểu thức:
B= \(\dfrac{\left(-2\right)^{24}.3^5-4^{12}.9^2}{8^8.3^5}+\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{301.303}\)
\(B=\dfrac{2^{24}\cdot3^5-2^{24}\cdot3^4}{2^{24}\cdot3^5}+1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{301}-\dfrac{1}{303}\)
\(=\dfrac{2^{24}\cdot3^4\left(3-1\right)}{2^{24}\cdot3^5}+\dfrac{302}{303}\)
\(=\dfrac{2}{3}+\dfrac{302}{303}=\dfrac{202+302}{303}=\dfrac{504}{303}\)
=168/101
Tính giá trị biểu thức:
\(A=\left[\frac{1\frac{11}{31}.4\frac{3}{7}-\left(15-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}.\left(-1\frac{14}{93}\right)\right].\frac{31}{50}\)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
Tính giá trị của các biểu thức sau:
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\end{array}\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
Tính giá trị của biểu thức.
a) \(\left( {\frac{{ - 2}}{{ - 5}}:\frac{3}{{ - 4}}} \right).\frac{4}{5}\)
b) \(\frac{{ - 3}}{{ - 4}}:\left( {\frac{7}{{ - 5}}.\frac{{ - 3}}{2}} \right)\)
c) \(\frac{{ - 1}}{9}.\frac{{ - 3}}{5} + \frac{5}{{ - 6}}.\frac{{ - 3}}{5} + \frac{5}{2}.\frac{{ - 3}}{5}.\)
a)
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}}:\frac{3}{{ - 4}}} \right).\frac{4}{5} = \left( {\frac{2}{5}.\frac{{ - 4}}{3}} \right).\frac{4}{5}\\ = \frac{{ - 8}}{{15}}.\frac{4}{5} = \frac{{ - 32}}{{75}}\end{array}\)
b)
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}}:\left( {\frac{7}{{ - 5}}.\frac{{ - 3}}{2}} \right) = \frac{3}{4}:\frac{{ - 21}}{{ - 10}}\\ = \frac{3}{4}.\frac{{10}}{{21}} = \frac{{30}}{{84}} = \frac{5}{14}\end{array}\)
c)
\(\begin{array}{l}\frac{{ - 1}}{9}.\frac{{ - 3}}{5} + \frac{5}{{ - 6}}.\frac{{ - 3}}{5} + \frac{5}{2}.\frac{{ - 3}}{5}.\\ = \frac{{ - 3}}{5}.\left( {\frac{{ - 1}}{9} + \frac{5}{{ - 6}} + \frac{5}{2}} \right)\\ = \frac{{ - 3}}{5}.\left( {\frac{{ - 2}}{{18}} + \frac{{ - 15}}{{18}} + \frac{{45}}{{18}}} \right)\\ = \frac{{ - 3}}{5}.\frac{{28}}{{18}}\\ = \frac{{ - 3}}{5}.\frac{{14}}{9}\\ = \frac{{ - 14}}{{15}}\end{array}\)
Tính giá trị của biểu thức: \(S=\left(\frac{3}{2}-\frac{2}{2^2}\right)\left(\frac{4}{3}-\frac{2}{3^2}\right)\left(\frac{5}{4}-\frac{2}{4^2}\right)...\left(\frac{101}{100}-\frac{2}{100^2}\right)\).
Ta có:
\(S=\left(\frac{3}{2}-\frac{2}{2^2}\right)\left(\frac{4}{3}-\frac{2}{3^2}\right)\left(\frac{5}{4}-\frac{2}{4^2}\right)...\left(\frac{101}{100}-\frac{2}{100^2}\right)\)
\(=\frac{4}{2^2}.\frac{10}{3^2}.\frac{18}{4^2}....\frac{100.101-2}{101^2}\)
\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{100.103}{101^2}\)
\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{98.101}{99^2}\frac{99.102}{100^2}\frac{100.103}{101^2}\)
\(=\frac{101.102.103}{1.2.3}\)
\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)
Tính giá trị biểu thức
\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
Tính giá trị các biểu thức.
a)\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}};\)
b)\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}};\)
c)\(\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}};\)
d)\(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}}.\)
a)
\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}} = \frac{{{{\left( {{2^2}} \right)}^3}.{{\left( {{3^2}} \right)}^7}}}{{{{\left( {{3^3}} \right)}^5}.{{\left( {{2^3}} \right)}^2}}} =\frac{2^{2.3}.3^{2.7}}{3^{3.5}.2^{2.3}}= \frac{{{2^6}{{.3}^{14}}}}{{{3^{15}}{{.2}^6}}} = \frac{1}{3}\)
b)
\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}} =\frac{(-2)^{3+7}}{3.(2^2)^6}= \frac{{{{\left( { - 2} \right)}^{10}}}}{{3.{{\left( {{2^{2.6}}} \right)}}}} = \frac{{{2^{10}}}}{{{{3.2}^{12}}}} = \frac{1}{{{{3.2}^2}}} = \frac{1}{{12}}\)
c)
\(\begin{array}{l}\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left[ {{{\left( {0,3} \right)}^2}} \right]}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,3} \right)}^6}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}}\\ = \frac{{{{\left( {0,3} \right)}^2}}}{{{{\left( {0,2} \right)}^2}}} = \frac{{0,9}}{{0,4}} = \frac{9}{4}\end{array}\)
d)
Cách 1: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{8 + 16 + 32}}{{49}} = \frac{{56}}{{49}} = \frac{8}{7}\)
Cách 2: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{2^3.(1+2+2^2)}}{{7^2}} = \frac{{2^3.7}}{{7^2}} = \frac{8}{7}\)