Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần vũ hoàng phúc
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 20:00

\(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\left(a>b>0\right)\)

\(\Leftrightarrow\left(\sqrt[]{a}-\sqrt[]{b}\right)^2< \left(\sqrt[]{a-b}\right)^2\)

\(\Leftrightarrow a+b-2\sqrt[]{ab}< a-b\)

\(\Leftrightarrow2\sqrt[]{ab}-2b>0\)

\(\Leftrightarrow2\sqrt[]{b}\left(\sqrt[]{a}-\sqrt[]{b}\right)>0\left(1\right)\)

mà \(a>b>0\)

Nên \(\left(1\right)\) luôn luôn đúng

Vậy \(\sqrt[]{a}-\sqrt[]{b}< \sqrt[]{a-b}\)

Nguyễn Thị Thanh Mai
Xem chi tiết
Hồng Phúc
15 tháng 12 2020 lúc 15:50

\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+c\right)\left(b+d\right)}\)

\(\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+bc+cd+da\)

\(\Leftrightarrow bc+da\ge2\sqrt{abcd}\)

\(\Leftrightarrow bc+da-2\sqrt{abcd}\ge0\)

\(\Leftrightarrow\left(\sqrt{bc}-\sqrt{da}\right)^2\ge0\) đúng \(\forall a,b,c,d>0\)

Lê Hữu Minh
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
lê thị bích ngọc
26 tháng 6 2017 lúc 21:55

từ a>b >0 <=> \(\sqrt{ab}>b\)<=> \(2b-2\sqrt{ba}< 0\)<=> a-a +b+b -\(2\sqrt{ab}\)< 0<=> a-\(2\sqrt{ab}\)+b < a- b  hay \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

minh nguyễn
Xem chi tiết
Trần Hữu Tuyển
26 tháng 11 2017 lúc 22:31

\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vì (a-b)2\(\ge\)0 luôn đúng nên \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)

Nguyễn Minh Hoàng
Xem chi tiết
Bùi quang minh
Xem chi tiết
Trần Đức Thắng
23 tháng 6 2015 lúc 22:22

\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\)

\(\left(\sqrt{a-b}\right)^2=a-b=a+b-2b\)

Vì a>b> 0 => a.b > b^2 => \(2\sqrt{ab}>2\sqrt{b^2}\Leftrightarrow2\sqrt{ab}>2b\)

\(-2\sqrt{ab}

Nguyen Thi Hang
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 21:26

Ta sẽ chứng minh bằng biến đổi tương đương :))

Ta có : \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< \left(\sqrt{a-b}\right)^2\Leftrightarrow a+b-2\sqrt{ab}< a-b\Leftrightarrow2b-2\sqrt{ab}< 0\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\left(1\right)\)

Vì \(b>0\Rightarrow\sqrt{b}>0\)và \(a>b\Rightarrow\sqrt{a}>\sqrt{b}\Rightarrow\sqrt{b}-\sqrt{a}< 0\)

nên từ đó suy ra \(\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\)luôn đúng.

Vậy (1) được chứng minh 

Suy ra đpcm.

Phạm Thị Mai Hương
30 tháng 5 2016 lúc 21:38

Ta có:

\(\left(\sqrt{ }a-\sqrt{ }b^{ }\right)^2-\left(\sqrt{a-b}\right)^2< 0\)

 \(\Leftrightarrow a+b-2\sqrt{ab}-a-b< 0\)

\(\Leftrightarrow-2\sqrt{ab}< 0\)(luôn đúng với mọi a>b>0)

\(\Rightarrow\)điều phải chứng minh