\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+c\right)\left(b+d\right)}\)
\(\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+bc+cd+da\)
\(\Leftrightarrow bc+da\ge2\sqrt{abcd}\)
\(\Leftrightarrow bc+da-2\sqrt{abcd}\ge0\)
\(\Leftrightarrow\left(\sqrt{bc}-\sqrt{da}\right)^2\ge0\) đúng \(\forall a,b,c,d>0\)