Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Huy Hoàng
Xem chi tiết
Nguyễn Hữu Phát
18 tháng 4 2022 lúc 16:55

a

 

Nguyễn Hữu Phát
18 tháng 4 2022 lúc 16:55

à lộn

 

Nguyễn Hữu Phát
18 tháng 4 2022 lúc 16:56

thôi chịu

 

Lê Ngọc Linh
Xem chi tiết
Nguyễn Thanh Khôi Cuber
Xem chi tiết
Azure phan bảo linh
Xem chi tiết
Lê Vương
23 tháng 1 2017 lúc 20:15

Giải :(x2+2xy+y2)+y2-6x-8y+2024=(x+y)2-2(x+y)3+y2-2y+2024

=(x+y-3)2+(y2-2y+1)+2014=(x+y-3)2+(y-1)2+2014 >=2014

vì (x+y-3)2;(y-1)2>=0 với mọi x;y

nên Pmin=2014khi y=1;x=2

Great Moonlight Thìef
23 tháng 1 2017 lúc 19:08

MinP=2024 nha!

Tôi yêu 1 người ko yêu t...
23 tháng 1 2017 lúc 19:09

2024 đó !đúng 100% luôn !

BiBo MoMo
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 8 2021 lúc 15:40

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)

Jig wake saw_Khánh Ly
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Khách vãng lai đã xóa
Me
Xem chi tiết
Phước Nguyễn
23 tháng 4 2016 lúc 21:37

\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)

     \(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)

\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)  với mọi  \(x,y\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\left(x+y-2\right)^2=0\)  và  \(\left(2y-1\right)^2=0\)

                              \(\Leftrightarrow\)  \(x+y-2=0\)  và  \(2y-1=0\)

                              \(\Leftrightarrow\)  \(x=2-y\)  và  \(y=\frac{1}{2}\)

                              \(\Leftrightarrow\)  \(x=\frac{3}{2}\)  và  \(y=\frac{1}{2}\)

Vậy,  \(P_{min}=2010\)  \(\Leftrightarrow\)   \(x=\frac{3}{2};\)  và  \(y=\frac{1}{2}\)