Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thanh tùng
Xem chi tiết
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

ghdoes
Xem chi tiết
Nguyễn Quỳnh Trang
Xem chi tiết
Nguyễn Quỳnh Trang
12 tháng 4 2020 lúc 10:11

Câu 3 là (1+1/x)(1+1/y) nha

Mà ko cần làm câu này đâu giúp mình 2 câu 1 và 2 thôi nhá

Nguyễn Việt Lâm
12 tháng 4 2020 lúc 15:26

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

Nguyễn Việt Lâm
12 tháng 4 2020 lúc 15:29

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

Trọng Lễ
Xem chi tiết
Hảo Đào thị mỹ
Xem chi tiết
Đỗ Lê Tú Linh
22 tháng 5 2016 lúc 15:41

b1: x+2y=1 => x=1-2y

P=4xy=4y(1-2y)=4y-8y2

Ta có: y2>=0(với mọi x)

=>8y2>=0(với mọi x)

=>-8y2<=0(với mọi x)

=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)

Do đó, GTLN của P là 4y khi:y=0

Vậy GTLN của P là 0

b3: Ta có: x^4>=0(với mọi x)

=>x^4+4>=4(với mọi x)

=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)

Do đó, GTLN của A là x^2/4 khi x=0

Vậy GTLN của A là 0 tại x=0

b4:\(M=x-2.\sqrt{x-5}\)

Ta có: \(\sqrt{x-5}\)>=0(với mọi x)

=>2.\(\sqrt{x-5}\)>=0(với mọi x)

=>-2.\(\sqrt{x-5}\)<=0(với mọi x)

=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)

Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0

                                                 x-5=0

                                                x=0+5=5

Vậy GTLN của M là 5 tại x=5

 

Mai Linh
22 tháng 5 2016 lúc 19:39

Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:

P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]

=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)

Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)

=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)

Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)

 

Mai Linh
22 tháng 5 2016 lúc 19:46

 bài 4 yêu cầu phải là tìm GTNN nhé

x-2\(\sqrt{x}\)-5= \(\left(\sqrt{x}\right)^2\)-2.\(\sqrt{x}\).1+\(1^2\)-\(1^2\)-5

=\(\left(\sqrt{x}-1\right)^2\)-6

Ta có \(\left(\sqrt{x}-1\right)^2\)\(\ge\)

=>\(\left(\sqrt{x}-1\right)^2\)-6 \(\ge\)-6

Vậy M đạt giá trị nhỏ nhất là -6 dấu = xảy ra khi \(\sqrt{x}\)-1=0=> x=1

 

Nguyễn Trâm Anh
Xem chi tiết
Hoàng Thu Hương
Xem chi tiết
LONG NGOC QUYNH
2 tháng 11 2017 lúc 4:27

bài 1:

a) (x+1)^2-(x-1)^2-3(x+1)(x-1)

=(x+1+x-1)(x+1-x+1)-3x^2-3

=2x^2-3x^2-3

=-x^2-3

Le Nhat Phuong
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
1 tháng 9 2017 lúc 20:51

 P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy) 

= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]

= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)

Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz) 

Suy ra: 

P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz) 

≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2 

Vậy P min = 9/2 

Dấu = xra khi x = y = z = 1 

Le Nhat Phuong
1 tháng 9 2017 lúc 20:52

Bài 1: 
Ta có 
A =x/(x+1) +y/(y+1)+z/(z+1) 
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1) 
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ] 
B = 1/(x+1)+1/(y+1) +1/(z+1) 
Đặt x+1=a; y+1=b;z+1 =c 
=>a+b+c=4 
4B=4(1/a+1/b+1/c) 
B= (a+b+c) (1/a+1/b+1/c) 
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a) 

Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab 
=> a/b+b/a ≥2 dấu "=" khi a=b 
Tương tự có 
a/c+c/a ≥2 ;b/c+c/b ≥2 
=>4B ≥3+2+2+2=9 
=>B ≥ 9/4 
=>A ≤ 3-9/4 = 3/4 
Vậy max A =3/4 khi a=b=c 
=>x=y=z =1/3 

Bài 2:

Giúp tui nha