Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tsukino Usagi
Xem chi tiết
Võ Đông Anh Tuấn
22 tháng 4 2016 lúc 12:04

a) tam giác ABC vuông tại A

\(\Rightarrow\) AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

Dương Đức Hiệp
22 tháng 4 2016 lúc 12:06

a) tam giác ABC vuông tại A

 AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

l҉o҉n҉g҉ d҉z҉
22 tháng 4 2016 lúc 12:13

a) tam giác ABC vuông tại A

 AB^2 + AC^2 = BC ^2

<=> 6^2 + 8^2 = BC^2

<=> BC^2 = 100

<=> BC = CĂN 100

<=> BC = 10 ( cm)

B ) Xét tam giác vuông BDA và tam giác vuông BDH :

ABD = HBD

BD là cạnh chung

Vậy hai tam giác bằng nhau

<=> AB = BH

Tsukino Usagi
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 4 2016 lúc 21:10

Cho $\Delta ABC$ΔABC vuông tại A có AB=6cm, AC=8cm.a) tính BCb) Kẻ tia phân giác góc B cắt AC ở D, hình chiếu của D trên BC là H. CMR AB=BHc) E là hình chiếu của C trên BD. CM $\Delta BAC=\Delta CEB$ΔBAC=ΔCEBd) so sánh AD và DC           ( giải nhanh lên giúp mình với mai mình phải nộp rồi! Làm xong mình sẽ k cho 3 cái)

\(hnhamihhlai\)

Oo Bản tình ca ác quỷ oO
21 tháng 4 2016 lúc 21:12

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2

=> 62 + 82 = BC2

=> BC2 = 100

=> BC = \(\sqrt{100}=10cm\)

vậy BC = 10 cm

Nobita Kun ko làm thì đi chỗ khác

Nguyễn Thị Mai Loan
21 tháng 4 2016 lúc 21:54

a. Áp dụng định lý Pytago trong tam giác ABC vuông tại A ta có

                                     AB2 + AC2 = BC2

                                => 62 + 82 = BC2

                                => BC = 10 (cm)

b. tam giác BDA và tam giác BDH là 2 tam giác vuông ta có:

góc ABD = góc HBD

BD chung

Do đó tam giác BDA = tam giác BDH (cạnh huyền - góc nhọn)

suy ra AB = BH

Ngưu Kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 21:53

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

Trần Ngọc Bảo Thy
Xem chi tiết
Tiến Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2022 lúc 10:42

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

Kaylee Trương
Xem chi tiết
Duy Vinh
12 tháng 5 2016 lúc 23:16

a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có 
 góc B chung ( kí hiệu góc nhé :D) 
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé 
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v

 

Nguyễn Như Ý
13 tháng 5 2016 lúc 8:35

TỰ VẼ HÌNH NHA  

a) xét tám giác ABC và tam giác HBA 

góc A= góc H (=90 độ)

góc A :chung

=> tam giác ABC ~ tam giác HBA (g-g)

 

No_pvp
12 tháng 7 2023 lúc 16:33

Mày nhìn cái chóa j

Nguyễn Bảo Trân
Xem chi tiết
Ngoc Diep
Xem chi tiết
Nguyễn Thanh Bình
8 tháng 7 2021 lúc 16:49

Xin lỗi mình không thể chụp ảnh.

Phần 5 thì chỉ có AE song song với CF thôi nhé. Còn BD vuông góc với CF.

1. Xét tam giác ABD và tam giác EBD có:

BAD=BED=90o (gt)

ABD= EBD( BD là tia phân giác)

BD chung ( gt)

=> 2 tam giác = nhau

=> AB=BE ( 2 cạnh tương ứng)

Xét tam giác EBF và tam giác ABC có:

B1=B2(cmt)

A=E  (cmt)

BE=BA( cmt)

=> 2 tam giác = nhau

2. Trong tam giác cân, tia phân giác xuất phát từ đỉnh đồng thời là đường trung trực. => BH vuông góc với AE và H là trung điểm của AE( tính chất đường trung trực) (đpcm)

3.Ta có: AD=ED( tam giác ABD= EBD) (1)

Mặt khác, DC> ED( cạnh huyền lớn hơn cạnh góc vuông) (2)

Từ (1)và (2) => DC>AD ( đcpm)

Ý 2:

Có: BA=BE(cmt)

BF=BC( tam giác BFE= BCA)

và BC= BE+EC ; BF= AB+AF

=> AF= EC

=> Tam giác BFC cân

5. Gọi giao của BH và FC là G.

Có tam giác BFC cân( cmt)

=> BG vuông góc với FC ( trong tam giác cân, tia phân giác đồng thời là đường trung tuyến)

Mặt khác,BH vuông góc với AE

=> AE song song FC ( từ vuông gó đến song song)

Nhớ tim và cảm ơn nhé. cảm ơn bạn. Chúc bạn học tốt.

 

Error
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 5 2021 lúc 23:02

c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

Nguyễn Lê Phước Thịnh
8 tháng 5 2021 lúc 22:59

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Nguyễn Lê Phước Thịnh
8 tháng 5 2021 lúc 23:01

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2=AQ^2+BQ^2\)

\(\Leftrightarrow BQ^2=AB^2-AQ^2=6^2-4.8^2=12.96\)

hay BQ=3,6(cm)

Vậy: BQ=3,6cm